More-Is-Better Strategy for Constructing Homoligand Polypyridyl Ruthenium Complexes as Photosensitizers for Infrared Two-Photon Photodynamic Therapy

Photodynamic therapy (PDT) uses a combination of photosensitizers (PSs), light sources, and reactive oxygen species (ROS) to damage only the desired target and keep normal tissues from being hurt. The dark cytotoxicity (chemotoxicity) of PSs, leading to whole-body damage in the absence of irradiatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2023-05, Vol.62 (21), p.8210-8218
Hauptverfasser: Tang, Shi-Jie, Wang, Meng-Fan, Yang, Rong, Liu, Meng, Li, Qing-Fang, Gao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photodynamic therapy (PDT) uses a combination of photosensitizers (PSs), light sources, and reactive oxygen species (ROS) to damage only the desired target and keep normal tissues from being hurt. The dark cytotoxicity (chemotoxicity) of PSs, leading to whole-body damage in the absence of irradiation, is a major limiting factor in PDT. How to simultaneously increase ROS generation and decrease dark cytotoxicity is an essential challenge that must be resolved in PS research. In this study, a series of homoligand polypyridyl ruthenium complexes (HPRCs) containing three singlet oxygen (1O2)-generating ligands (L) in a single molecule ([Ru­(L)3]2+) have been constructed. Compared to the heteroligand complexes [Ru­(bpy)2(L)]2+ where bpy is 2,2′-bipyridine, the 1O2 quantum yield under infrared two-photon irradiation and the DNA photocleavage effect of the HPRCs are significantly enhanced with two more ligands L. The intraligand triplet excited states transition played an important role in the activation of oxygen. The HPRCs target the mitochondria but not the nuclei, generating 1O2 intracellularly under irradiation of visible or infrared light. Ru1 exhibits high phototoxicity and low dark cytotoxicity toward human malignant melanoma cells in vitro. Moreover, HPRCs have minimal cytotoxicity to human normal liver cells, suggesting their potential as antitumor PDT reagents with more security. This study may provide inspiration for the structural design of potent PS for PDT.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.3c00585