Biallelic variants in KCTD19 associated with male factor infertility and oligoasthenoteratozoospermia

Abstract STUDY QUESTION Can whole-exome sequencing (WES) reveal new genetic factors responsible for male infertility characterized by oligozoospermia? SUMMARY ANSWER We identified biallelic missense variants in the Potassium Channel Tetramerization Domain Containing 19 gene (KCTD19) and confirmed it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human reproduction (Oxford) 2023-07, Vol.38 (7), p.1399-1411
Hauptverfasser: Wang, Weili, Su, Lilan, Meng, Lanlan, He, Jiaxin, Tan, Chen, Yi, Duo, Cheng, Dehua, Zhang, Huan, Lu, Guangxiu, Du, Juan, Lin, Ge, Zhang, Qianjun, Tu, Chaofeng, Tan, Yue-Qiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract STUDY QUESTION Can whole-exome sequencing (WES) reveal new genetic factors responsible for male infertility characterized by oligozoospermia? SUMMARY ANSWER We identified biallelic missense variants in the Potassium Channel Tetramerization Domain Containing 19 gene (KCTD19) and confirmed it to be a novel pathogenic gene for male infertility. WHAT IS KNOWN ALREADY KCTD19 is a key transcriptional regulator that plays an indispensable role in male fertility by regulating meiotic progression. Kctd19 gene-disrupted male mice exhibit infertility due to meiotic arrest. STUDY DESIGN, SIZE, DURATION We recruited a cohort of 536 individuals with idiopathic oligozoospermia from 2014 to 2022 and focused on five infertile males from three unrelated families. Semen analysis data and ICSI outcomes were collected. WES and homozygosity mapping were performed to identify potential pathogenic variants. The pathogenicity of the identified variants was investigated in silico and in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Male patients diagnosed with primary infertility were recruited from the Reproductive and Genetic Hospital of CITIC-Xiangya. Genomic DNA extracted from affected individuals was used for WES and Sanger sequencing. Sperm phenotype, sperm nuclear maturity, chromosome aneuploidy, and sperm ultrastructure were assessed using hematoxylin and eosin staining and toluidine blue staining, FISH and transmission electron microscopy. The functional effects of the identified variants in HEK293T cells were investigated via western blotting and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE We identified three homozygous missense variants (NM_001100915, c.G628A:p.E210K, c.C893T:p.P298L, and c.G2309A:p.G770D) in KCTD19 in five infertile males from three unrelated families. Abnormal morphology of the sperm heads with immature nuclei and/or nuclear aneuploidy were frequently observed in individuals with biallelic KCTD19 variants, and ICSI was unable to rescue these deficiencies. These variants reduced the abundance of KCTD19 due to increased ubiquitination and impaired its nuclear colocalization with its functional partner, zinc finger protein 541 (ZFP541), in HEK293T cells. LIMITATIONS, REASONS FOR CAUTION The exact pathogenic mechanism remains unclear, and warrants further studies using knock-in mice that mimic the missense mutations found in individuals with biallelic KCTD19 variants. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first to repor
ISSN:0268-1161
1460-2350
DOI:10.1093/humrep/dead095