Anatomical adaptation of water‐stressed Eugenia uniflora using green synthesized silver nanoparticles and melatonin

Cell and sub‐cellular anatomical adjustments are adaptations utilized by plants to tolerate abiotic stress. Both melatonin and Morinda lucida‐silver nanoparticles (ML‐AgNPs) are recognized as bio‐stimulants. The study examined the morphological changes and adaptive characteristics of these bio‐stimu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2023-06, Vol.86 (6), p.648-658
Hauptverfasser: David, Oyinade A., Labulo, Ayomide H., Adejayan, Margaret T., Adeleke, Elijah A., Adeniyi, Ifedayo M., Terna, Augustine D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell and sub‐cellular anatomical adjustments are adaptations utilized by plants to tolerate abiotic stress. Both melatonin and Morinda lucida‐silver nanoparticles (ML‐AgNPs) are recognized as bio‐stimulants. The study examined the morphological changes and adaptive characteristics of these bio‐stimulants under water‐stress Eugenia uniflora. Twenty‐four hours was spent priming the seeds with melatonin (0.06 mg/L), ML‐AgNPs (0.06 mg/L), and a mixture (1:1) of the two. The seeds were sown and subjected to water stress for 7 days. The leaves, stems, and roots of water‐stressed E. uniflora were sectioned, dried, and examined using a microscope. Drought stress led to the production of non‐glandular trichomes on the abaxial and the transformation of paracytic stomata into diacytic stomata. During water stress, melatonin enlarges intercellular gaps and stomata, increases sponge and palisade parenchyma, and thickens epidermis (stem and root) and fibers. The ML‐AgNPs diminished the size of mesophyll, intercellular gaps, stomata, and stem fiber. The ML‐AgNPs increased the size of bulliform cells and activated the mechanical resistance features of sclerophyllous leaves (thick‐celled epidermis and sclerieds) and ray parenchyma (root and stem). Equally, Melatonin and ML‐AgNPs increased stem and root anatomical characteristics (xylem, bark, pith, cortex, epidermis, and vascular bundles). Stomata of E. uniflora are susceptible to alterations and undergo cell division into two new stomata (stomatogensis) in response to varying conditions (melatonin and ML‐AgNPs). Melatonin adopted a strategy for maintaining a high plant water status, possibly by osmoregulation, whereas E. uniflora primed with ML‐AgNPs survived by minimizing transpirational water loss through morphological changes. Green synthesized silver nanoparticles strengthened and improved the mechanical resistance of drought stressed Eugenia uniflora through the development of non‐glandular trichomes and ray parenchyma at leaves and stem respectively.
ISSN:1059-910X
1097-0029
DOI:10.1002/jemt.24320