Ultra-stable cryogenic sapphire cavity laser with an instability reaching 2 × 10 -16 based on a low vibration level cryostat

Cryogenic ultra-stable lasers have extremely low thermal noise limits and frequency drifts, but they are more seriously affected by vibration noise from cryostats. Main material candidates for cryogenic ultra-stable cavities include silicon and sapphire. Although sapphire has many excellent properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2023-05, Vol.48 (10), p.2519-2522
Hauptverfasser: He, Leilei, Zhang, Jingxuan, Wang, Zhiyuan, Chang, Jialu, Wu, Qiyue, Lu, Zehuang, Zhang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cryogenic ultra-stable lasers have extremely low thermal noise limits and frequency drifts, but they are more seriously affected by vibration noise from cryostats. Main material candidates for cryogenic ultra-stable cavities include silicon and sapphire. Although sapphire has many excellent properties at low temperature, the development of sapphire-based cavities is less advanced than that of silicon-based. Using a homemade cryogenic sapphire cavity, we develop an ultra-stable laser source with a frequency instability of 2(1) × 10 . This is the best frequency instability level among similar systems using cryogenic sapphire cavities reported so far. Low vibration performance of the cryostat is demonstrated with a two-stage vibration isolation, and the vibration suppression is optimized by tuning the mixing ratio of the gas-liquid-helium. With this technique, the linear power spectral densities of vibrations at certain frequencies higher than tens of hertz are suppressed by two orders of magnitude in all directions.
ISSN:0146-9592
1539-4794
DOI:10.1364/ol.488195