Phase Transition-Promoted Rapid Photomechanical Motions of Single Crystals of a Triene Coordination Polymer
Molecular crystals with the ability to transform light energy into macroscopic mechanical motions are a promising class of materials with potential applications in actuating and photonic devices. In regard to such materials, coordination polymers that exhibit dynamic photomechanical motion, associat...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-10, Vol.62 (41), p.e202306048-e202306048 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular crystals with the ability to transform light energy into macroscopic mechanical motions are a promising class of materials with potential applications in actuating and photonic devices. In regard to such materials, coordination polymers that exhibit dynamic photomechanical motion, associated with a phase transition, are unknown. Herein, we report an intriguing photoactive, one-dimensional Zn
coordination polymer, 1, derived from 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene and 3,5-difluorobenzoate. Single crystals of 1 under UV light irradiation exhibit rapid shrinking and bending, violent bursting-jumping, splitting, and cracking behavior. Single-crystal X-ray diffraction analysis and
H NMR spectroscopy reveal an unusual photoinduced phase transition involving a single-crystal-to-single-crystal [2+2] cycloaddition reaction that results in photomechanical responses. Interestingly, crystals of 1, which are triclinic with space group
, are transformed into a higher symmetry, monoclinic cell with space group C2/c. This process represents a rare example of symmetry enhancement upon photoirradiation. The photomechanical activity is likely due to the sudden release of stress associated with strained molecular geometries and significant solid-state molecular movement arising from cleavage and formation of chemical bonds. A composite membrane fabricated from 1 and polyvinyl alcohol (PVA) also displays interesting photomechanical behavior under UV light illumination, indicating the material's potential as a photoactuator. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202306048 |