A Deep Learning Framework for Deriving Noninvasive Intracranial Pressure Waveforms from Transcranial Doppler

Increased intracranial pressure (ICP) causes disability and mortality in the neurointensive care population. Current methods for monitoring ICP are invasive. We designed a deep learning framework using a domain adversarial neural network to estimate noninvasive ICP, from blood pressure, electrocardi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of neurology 2023-07, Vol.94 (1), p.196-202
Hauptverfasser: Megjhani, Murad, Terilli, Kalijah, Weinerman, Bennett, Nametz, Daniel, Kwon, Soon Bin, Velazquez, Angela, Ghoshal, Shivani, Roh, David J., Agarwal, Sachin, Connolly, E. Sander, Claassen, Jan, Park, Soojin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased intracranial pressure (ICP) causes disability and mortality in the neurointensive care population. Current methods for monitoring ICP are invasive. We designed a deep learning framework using a domain adversarial neural network to estimate noninvasive ICP, from blood pressure, electrocardiogram, and cerebral blood flow velocity. Our model had a mean of median absolute error of 3.88 ± 3.26 mmHg for the domain adversarial neural network, and 3.94 ± 1.71 mmHg for the domain adversarial transformers. Compared with nonlinear approaches, such as support vector regression, this was 26.7% and 25.7% lower. Our proposed framework provides more accurate noninvasive ICP estimates than currently available. ANN NEUROL 2023;94:196–202
ISSN:0364-5134
1531-8249
1531-8249
DOI:10.1002/ana.26682