Designing Robust Repetitive Controllers
A method for designing repetitive feedback controllers using nonparametric frequency response plant models is developed. In comparison to the zero-phase-error (ZPE) controller (ASME J. Dyn. Syst. Meas. Control, 111, pp. 353–358), this method has the added benefit of providing improved transient perf...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2004-12, Vol.126 (4), p.865-872 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for designing repetitive feedback controllers using nonparametric frequency response plant models is developed. In comparison to the zero-phase-error (ZPE) controller (ASME J. Dyn. Syst. Meas. Control, 111, pp. 353–358), this method has the added benefit of providing improved transient performance when the plant inverse is unstable. In this controller design process, a connection is made between model uncertainty and the desired frequency response of the so-called q filter. Also, it will be shown that an optimal equiripple filter is useful when designing high-order q filters. The entire process was experimentally verified on an engine control application. A repetitive controller was used to determine the dynamic fueling requirements of a fuel injected, spark-ignition engine subjected to periodic changes in the throttle position. This fueling information is necessary when designing feedforward fueling algorithms. |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.1849248 |