A multiscale model for analyzing the synergy of CS and WSS on the endothelium in straight arteries

A multiscale model was proposed to calculate the circumferential stress (CS) and wall shear stress (WSS) and analyze the effects of global and local factors on the CS, WSS and their synergy on the arterial endothelium in large straight arteries. A parameter pair [Zs, SPA] (defined as the ratio of CS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2006-02, Vol.22 (1), p.76-83
Hauptverfasser: Qin, Kairong, Jiang, Zonglai, Sun, Hui, Gong, Keqin, Liu, Zhaorong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multiscale model was proposed to calculate the circumferential stress (CS) and wall shear stress (WSS) and analyze the effects of global and local factors on the CS, WSS and their synergy on the arterial endothelium in large straight arteries. A parameter pair [Zs, SPA] (defined as the ratio of CS amplitude to WSS amplitude and the phase angle between CS and WSS for different harmonic components, respectively) was proposed to characterize the synergy of CS and WSS. The results demonstrated that the CS or WSS in the large straight arteries is determined by the global factors, i.e. the preloads and the afterloads, and the local factors, i.e. the local mechanical properties and the zero-stress states of arterial walls, whereas the Zs and SPA are primarily determined by the local factors and the afterloads. Because the arterial input impedance has been shown to reflect the physiological and pathological states of whole downstream arterial beds, the stress amplitude ratio Zs and the stress phase difference SPA might be appropriate indices to reflect the influences of the states of whole downstream arterial beds on the local blood flow-dependent phenomena such as angiogenesis, vascular remodeling and atherosgenesis.
ISSN:0567-7718
1614-3116
DOI:10.1007/s10409-005-0082-2