Green and effective fabrication of porous surfaces with adjustable cell structure by foaming at incomplete healed polymer–polymer interface

[Display omitted] Porous surfaces of materials have shown huge potentialities for endowing materials with multifarious functions. Despite introducing gas-confined-barriers in supercritical CO2 foaming technology is effective to weaken the gas escape effect and facilitate the preparation of porous su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-09, Vol.645, p.743-751
Hauptverfasser: Lv, Cuifang, Liao, Xia, Zou, Fangfang, Tang, Wanyu, Yang, Yaguang, Xing, Shaowei, Li, Guangxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Porous surfaces of materials have shown huge potentialities for endowing materials with multifarious functions. Despite introducing gas-confined-barriers in supercritical CO2 foaming technology is effective to weaken the gas escape effect and facilitate the preparation of porous surfaces, the differences in intrinsic properties between barriers and polymers result in bottlenecks like cell structure adjustment limitation and incompletely eliminated solid skin layers. This study undertakes a preparation approach for porous surfaces by foaming at incompletely healed polystyrene/polystyrene interfaces. In contrast with employing gas-confined-barriers reported before, the porous surfaces foamed at incompletely healed polymer/polymer interfaces show a monolayer, full-open cell morphology, and wide adjustable range in cell structures including cell size (120 nm∼15.68 μm), cell density (3.40 × 105 cells/cm2∼3.47 × 109 cells/cm2), and surface roughness (0.50 μm∼7.22 μm). Furthermore, the wettability of obtained porous surfaces depending on the cell structures is systematically discussed. Finally, a super-hydrophobic surface with hierarchical micro-nanoscale roughness, low water adhesion, and high water-impact resistance is built by depositing nanoparticles on a porous surface. Consequently, this study offers a clean and simple method to prepare porous surfaces with adjustable cell structures, which is expected to open a door to developing a new fabrication technique for micro/nano-porous surfaces.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.04.167