Molecular insights into the behavior of the allosteric and ATP-competitive inhibitors in interaction with AKT1 protein: A molecular dynamics study
AKT1 is a family of serine/threonine kinases that play a key role in regulating cell growth, proliferation, metabolism, and survival. Two significant classes of AKT1 inhibitors (allosteric and ATP-competitive) are used in clinical development, and both of them could be effective in specific conditio...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-07, Vol.242 (Pt 2), p.124853-124853, Article 124853 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AKT1 is a family of serine/threonine kinases that play a key role in regulating cell growth, proliferation, metabolism, and survival. Two significant classes of AKT1 inhibitors (allosteric and ATP-competitive) are used in clinical development, and both of them could be effective in specific conditions. In this study, we investigated the effect of several different inhibitors on two conformations of the AKT1 by computational approach. We studied the effects of four inhibitors, including MK-2206, Miransertib, Herbacetin, and Shogaol, on the inactive conformation of AKT1 protein and the effects of four inhibitors, Capivasertib, AT7867, Quercetin, and Oridonin molecules on the active conformation of AKT1 protein. The results of simulations showed that each inhibitor creates a stable complex with AKT1 protein, although AKT1/Shogaol and AKT1/AT7867 complexes showed less stability than other complexes. Based on RMSF calculations, the fluctuation of residues in the mentioned complexes is higher than in other complexes. As compared to other complexes in either of its two conformations, MK-2206 has a stronger binding free energy affinity in the inactive conformation, −203.446 kJ/mol. MM-PBSA calculations showed that the van der Waals interactions contribute more than the electrostatic interactions to the binding energy of inhibitors to AKT1 protein. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.124853 |