Activity and stability of bifunctional perovskite/carbon-based electrodes for the removal of antipyrine by electro-Fenton process

Bifunctional perovskite/carbon-black(CB)/polytetrafluoroethylene(PTFE) electrodes for electro-generation and catalytic decomposition of hydrogen peroxide to oxidizing hydroxyl radicals have been fabricated. These electrodes were tested for electroFenton (EF) removal of antipyrine (ANT) as a model an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2023-09, Vol.334, p.138858-138858, Article 138858
Hauptverfasser: Cruz del Álamo, A., Puga, A., Pariente, M.I., Rosales, E., Molina, R., Pazos, M., Martínez, F., Sanromán, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bifunctional perovskite/carbon-black(CB)/polytetrafluoroethylene(PTFE) electrodes for electro-generation and catalytic decomposition of hydrogen peroxide to oxidizing hydroxyl radicals have been fabricated. These electrodes were tested for electroFenton (EF) removal of antipyrine (ANT) as a model antipyretic and analgesic drug. The influence of the binder loading (20 and 40 wt % PTFE) and type of solvent (1,3-dipropanediol and water) was studied for the preparation of CB/PTFE electrodes. The electrode prepared with 20 wt % PTFE and water exhibited a low impedance and remarkable H2O2 electro-generation (about 1 g/L after 240 min, a production rate of ca. 6.5 mg/h·cm2). The incorporation of perovskite on CB/PTFE electrodes was also studied following two different methods: i) direct deposition on the CB/PTFE electrode surface and ii) addition in the own CB/PTFE/water paste used for the fabrication. Physicochemical and electrochemical characterization techniques were used for the electrode's characterization. The dispersion of perovskite particles in the own electrode matrix (method ii) exhibited a higher EF performance than the immobilisation onto the electrode surface (method i). EF experiments at 40 mA/cm2 and pH 7 (non-acidified conditions) showed ANT and TOC removals of 30% and 17%, respectively. The increase of current intensity up to 120 mA/cm2 achieved the complete removal of ANT and 92% of TOC mineralisation in 240 min. The bifunctional electrode also proved high stability and durability after 15 h of operation. [Display omitted] •Perovskite/carbon-black/polytetrafluoroethylene electrodes have been manufactured.•Remarkable activity of electro-Fenton process under neutral pH conditions.•Significant ANT and TOC removal rates under moderate electrochemical conditions.•High stability and durability of fabricated perovskite/CB/PTFE electrodes.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2023.138858