Nonmetallic SERS-based biosensor for ultrasensitive and reproducible immunoassay of ferritin mediated by magnetic molybdenum disulfide nanoflowers and black phosphorus nanosheets

To improve the curability of cancer patients, it is essential to propose an early diagnosis technology with ultra-high sensitivity and reliable biocompatibility. Herein, a sophisticated nonmetallic SERS-based immunosensor, comprised by a MoS2 @Fe3O4 nanoflower-based immunoprobe with magnetism and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2023-07, Vol.227, p.113338-113338, Article 113338
Hauptverfasser: Ma, Jiali, Xue, Danni, Xu, Tao, Wei, Guodong, Gu, Chenjie, Zhang, Yongling, Jiang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the curability of cancer patients, it is essential to propose an early diagnosis technology with ultra-high sensitivity and reliable biocompatibility. Herein, a sophisticated nonmetallic SERS-based immunosensor, comprised by a MoS2 @Fe3O4 nanoflower-based immunoprobe with magnetism and a black phosphorus (BP) nanosheet-based immunosubstrate, was proposed for the specific in-situ monitoring of ferritin (FER). The sandwich immunosensor was endowed with an excellent SERS performance mainly ascribed to a synergistic chemical enhancement as well as an additional electrostatic adsorption effect, achieving a limit of detection down to 7.3 × 10−5 μg/mL. Particularly, all the Raman label, target FER, and anti-FER could be completely degraded within 70 min under visible light irradiation owing to the favorable photocatalytic activities of MoS2 and BP which could be then effectively separated and collected with the assistance of an external magnet. Such a recyclable nonmetallic immunosensor holds great potential and practicality in the clinical screening of cancer. [Display omitted] •A nonmetallic SERS-based immunosensor was developed by using MoS2 @Fe3O4 and BP.•A reproducible and ultrasensitive immunoassay of ferritin was demonstrated.•SERS performance triggered by synergistic chemical enhancement was investigated.
ISSN:0927-7765
1873-4367
DOI:10.1016/j.colsurfb.2023.113338