Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms
Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable t...
Gespeichert in:
Veröffentlicht in: | JACC. Cardiovascular imaging 2023-08, Vol.16 (8), p.1005-1018 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1018 |
---|---|
container_issue | 8 |
container_start_page | 1005 |
container_title | JACC. Cardiovascular imaging |
container_volume | 16 |
creator | Tokodi, Márton Magyar, Bálint Soós, András Takeuchi, Masaaki Tolvaj, Máté Lakatos, Bálint Károly Kitano, Tetsuji Nabeshima, Yosuke Fábián, Alexandra Szigeti, Mark Bence Horváth, András Merkely, Béla Kovács, Attila |
description | Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide.
The authors aimed to implement a deep learning (DL)–based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values.
The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years.
The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF |
doi_str_mv | 10.1016/j.jcmg.2023.02.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2813556644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1936878X23001146</els_id><sourcerecordid>2813556644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e329b1e4adcaf2cc7c5806e785cfd273734539b89abb03ce33e65dd493fd85713</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMo3l_AhXTppjWXNknBjZfxAgOKqLiLaXI6pkzbMekIvo3P4pOZoerS1Tlwvv-H8yF0QHBGMOHHTdaYdpZRTFmGaYaJWEPbRAqeiqIk63EvGU-lkM9baCeEBmOOeS420RYTREgs6DZ6uQBYJFPQvnPdLD3TAWxy58E6M7i-S_o6uXez1-Hr8wm6wTuznGufTBoYz5dej8tjiPGvT3qRTMxrb7S3rp953YY9tFHreYD9n7mLHi8nD-fX6fT26ub8dJqaHOMhBUbLikCurdE1NUaYQmIOQhamtlQwwfKClZUsdVVhZoAx4IW1eclqKwtB2C46GnsXvn9bQhhU64KB-Vx30C-DopKwouA8zyNKR9T4PgQPtVp412r_oQhWK7OqUSuzamVWYaqi2Rg6_OlfVi3Yv8ivygicjADEL98deBWMg85ElT7aUrZ3__V_A2GWjC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813556644</pqid></control><display><type>article</type><title>Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tokodi, Márton ; Magyar, Bálint ; Soós, András ; Takeuchi, Masaaki ; Tolvaj, Máté ; Lakatos, Bálint Károly ; Kitano, Tetsuji ; Nabeshima, Yosuke ; Fábián, Alexandra ; Szigeti, Mark Bence ; Horváth, András ; Merkely, Béla ; Kovács, Attila</creator><creatorcontrib>Tokodi, Márton ; Magyar, Bálint ; Soós, András ; Takeuchi, Masaaki ; Tolvaj, Máté ; Lakatos, Bálint Károly ; Kitano, Tetsuji ; Nabeshima, Yosuke ; Fábián, Alexandra ; Szigeti, Mark Bence ; Horváth, András ; Merkely, Béla ; Kovács, Attila</creatorcontrib><description>Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide.
The authors aimed to implement a deep learning (DL)–based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values.
The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years.
The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF <45%) with an accuracy of 78.4%, which was comparable to an expert reader’s visual assessment (77.0%; P = 0.678). The DL-predicted RVEF values were associated with major adverse cardiac events independent of age, sex, and left ventricular systolic function (HR: 0.924 [95% CI: 0.862-0.990]; P = 0.025).
Using 2D echocardiographic videos alone, the proposed DL-based tool can accurately assess RV function, with similar diagnostic and prognostic power as 3D imaging.
[Display omitted]</description><identifier>ISSN: 1936-878X</identifier><identifier>EISSN: 1876-7591</identifier><identifier>DOI: 10.1016/j.jcmg.2023.02.017</identifier><identifier>PMID: 37178072</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Deep Learning ; Echocardiography ; Humans ; Predictive Value of Tests ; Retrospective Studies ; right ventricle ; right ventricular dysfunction ; right ventricular ejection fraction ; Stroke Volume ; Ventricular Dysfunction, Right ; Ventricular Function, Right</subject><ispartof>JACC. Cardiovascular imaging, 2023-08, Vol.16 (8), p.1005-1018</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e329b1e4adcaf2cc7c5806e785cfd273734539b89abb03ce33e65dd493fd85713</citedby><cites>FETCH-LOGICAL-c400t-e329b1e4adcaf2cc7c5806e785cfd273734539b89abb03ce33e65dd493fd85713</cites><orcidid>0000-0002-8539-5907 ; 0000-0001-7606-1537 ; 0000-0003-3036-4131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcmg.2023.02.017$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37178072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokodi, Márton</creatorcontrib><creatorcontrib>Magyar, Bálint</creatorcontrib><creatorcontrib>Soós, András</creatorcontrib><creatorcontrib>Takeuchi, Masaaki</creatorcontrib><creatorcontrib>Tolvaj, Máté</creatorcontrib><creatorcontrib>Lakatos, Bálint Károly</creatorcontrib><creatorcontrib>Kitano, Tetsuji</creatorcontrib><creatorcontrib>Nabeshima, Yosuke</creatorcontrib><creatorcontrib>Fábián, Alexandra</creatorcontrib><creatorcontrib>Szigeti, Mark Bence</creatorcontrib><creatorcontrib>Horváth, András</creatorcontrib><creatorcontrib>Merkely, Béla</creatorcontrib><creatorcontrib>Kovács, Attila</creatorcontrib><title>Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms</title><title>JACC. Cardiovascular imaging</title><addtitle>JACC Cardiovasc Imaging</addtitle><description>Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide.
The authors aimed to implement a deep learning (DL)–based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values.
The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years.
The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF <45%) with an accuracy of 78.4%, which was comparable to an expert reader’s visual assessment (77.0%; P = 0.678). The DL-predicted RVEF values were associated with major adverse cardiac events independent of age, sex, and left ventricular systolic function (HR: 0.924 [95% CI: 0.862-0.990]; P = 0.025).
Using 2D echocardiographic videos alone, the proposed DL-based tool can accurately assess RV function, with similar diagnostic and prognostic power as 3D imaging.
[Display omitted]</description><subject>Deep Learning</subject><subject>Echocardiography</subject><subject>Humans</subject><subject>Predictive Value of Tests</subject><subject>Retrospective Studies</subject><subject>right ventricle</subject><subject>right ventricular dysfunction</subject><subject>right ventricular ejection fraction</subject><subject>Stroke Volume</subject><subject>Ventricular Dysfunction, Right</subject><subject>Ventricular Function, Right</subject><issn>1936-878X</issn><issn>1876-7591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMo3l_AhXTppjWXNknBjZfxAgOKqLiLaXI6pkzbMekIvo3P4pOZoerS1Tlwvv-H8yF0QHBGMOHHTdaYdpZRTFmGaYaJWEPbRAqeiqIk63EvGU-lkM9baCeEBmOOeS420RYTREgs6DZ6uQBYJFPQvnPdLD3TAWxy58E6M7i-S_o6uXez1-Hr8wm6wTuznGufTBoYz5dej8tjiPGvT3qRTMxrb7S3rp953YY9tFHreYD9n7mLHi8nD-fX6fT26ub8dJqaHOMhBUbLikCurdE1NUaYQmIOQhamtlQwwfKClZUsdVVhZoAx4IW1eclqKwtB2C46GnsXvn9bQhhU64KB-Vx30C-DopKwouA8zyNKR9T4PgQPtVp412r_oQhWK7OqUSuzamVWYaqi2Rg6_OlfVi3Yv8ivygicjADEL98deBWMg85ElT7aUrZ3__V_A2GWjC4</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Tokodi, Márton</creator><creator>Magyar, Bálint</creator><creator>Soós, András</creator><creator>Takeuchi, Masaaki</creator><creator>Tolvaj, Máté</creator><creator>Lakatos, Bálint Károly</creator><creator>Kitano, Tetsuji</creator><creator>Nabeshima, Yosuke</creator><creator>Fábián, Alexandra</creator><creator>Szigeti, Mark Bence</creator><creator>Horváth, András</creator><creator>Merkely, Béla</creator><creator>Kovács, Attila</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8539-5907</orcidid><orcidid>https://orcid.org/0000-0001-7606-1537</orcidid><orcidid>https://orcid.org/0000-0003-3036-4131</orcidid></search><sort><creationdate>202308</creationdate><title>Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms</title><author>Tokodi, Márton ; Magyar, Bálint ; Soós, András ; Takeuchi, Masaaki ; Tolvaj, Máté ; Lakatos, Bálint Károly ; Kitano, Tetsuji ; Nabeshima, Yosuke ; Fábián, Alexandra ; Szigeti, Mark Bence ; Horváth, András ; Merkely, Béla ; Kovács, Attila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e329b1e4adcaf2cc7c5806e785cfd273734539b89abb03ce33e65dd493fd85713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep Learning</topic><topic>Echocardiography</topic><topic>Humans</topic><topic>Predictive Value of Tests</topic><topic>Retrospective Studies</topic><topic>right ventricle</topic><topic>right ventricular dysfunction</topic><topic>right ventricular ejection fraction</topic><topic>Stroke Volume</topic><topic>Ventricular Dysfunction, Right</topic><topic>Ventricular Function, Right</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokodi, Márton</creatorcontrib><creatorcontrib>Magyar, Bálint</creatorcontrib><creatorcontrib>Soós, András</creatorcontrib><creatorcontrib>Takeuchi, Masaaki</creatorcontrib><creatorcontrib>Tolvaj, Máté</creatorcontrib><creatorcontrib>Lakatos, Bálint Károly</creatorcontrib><creatorcontrib>Kitano, Tetsuji</creatorcontrib><creatorcontrib>Nabeshima, Yosuke</creatorcontrib><creatorcontrib>Fábián, Alexandra</creatorcontrib><creatorcontrib>Szigeti, Mark Bence</creatorcontrib><creatorcontrib>Horváth, András</creatorcontrib><creatorcontrib>Merkely, Béla</creatorcontrib><creatorcontrib>Kovács, Attila</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>JACC. Cardiovascular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokodi, Márton</au><au>Magyar, Bálint</au><au>Soós, András</au><au>Takeuchi, Masaaki</au><au>Tolvaj, Máté</au><au>Lakatos, Bálint Károly</au><au>Kitano, Tetsuji</au><au>Nabeshima, Yosuke</au><au>Fábián, Alexandra</au><au>Szigeti, Mark Bence</au><au>Horváth, András</au><au>Merkely, Béla</au><au>Kovács, Attila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms</atitle><jtitle>JACC. Cardiovascular imaging</jtitle><addtitle>JACC Cardiovasc Imaging</addtitle><date>2023-08</date><risdate>2023</risdate><volume>16</volume><issue>8</issue><spage>1005</spage><epage>1018</epage><pages>1005-1018</pages><issn>1936-878X</issn><eissn>1876-7591</eissn><abstract>Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide.
The authors aimed to implement a deep learning (DL)–based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values.
The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years.
The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF <45%) with an accuracy of 78.4%, which was comparable to an expert reader’s visual assessment (77.0%; P = 0.678). The DL-predicted RVEF values were associated with major adverse cardiac events independent of age, sex, and left ventricular systolic function (HR: 0.924 [95% CI: 0.862-0.990]; P = 0.025).
Using 2D echocardiographic videos alone, the proposed DL-based tool can accurately assess RV function, with similar diagnostic and prognostic power as 3D imaging.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37178072</pmid><doi>10.1016/j.jcmg.2023.02.017</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8539-5907</orcidid><orcidid>https://orcid.org/0000-0001-7606-1537</orcidid><orcidid>https://orcid.org/0000-0003-3036-4131</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-878X |
ispartof | JACC. Cardiovascular imaging, 2023-08, Vol.16 (8), p.1005-1018 |
issn | 1936-878X 1876-7591 |
language | eng |
recordid | cdi_proquest_miscellaneous_2813556644 |
source | MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Deep Learning Echocardiography Humans Predictive Value of Tests Retrospective Studies right ventricle right ventricular dysfunction right ventricular ejection fraction Stroke Volume Ventricular Dysfunction, Right Ventricular Function, Right |
title | Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Prediction%20of%20Right%C2%A0Ventricular%20Ejection%20Fraction%20Using%C2%A02D%20Echocardiograms&rft.jtitle=JACC.%20Cardiovascular%20imaging&rft.au=Tokodi,%20M%C3%A1rton&rft.date=2023-08&rft.volume=16&rft.issue=8&rft.spage=1005&rft.epage=1018&rft.pages=1005-1018&rft.issn=1936-878X&rft.eissn=1876-7591&rft_id=info:doi/10.1016/j.jcmg.2023.02.017&rft_dat=%3Cproquest_cross%3E2813556644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813556644&rft_id=info:pmid/37178072&rft_els_id=S1936878X23001146&rfr_iscdi=true |