Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms

Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACC. Cardiovascular imaging 2023-08, Vol.16 (8), p.1005-1018
Hauptverfasser: Tokodi, Márton, Magyar, Bálint, Soós, András, Takeuchi, Masaaki, Tolvaj, Máté, Lakatos, Bálint Károly, Kitano, Tetsuji, Nabeshima, Yosuke, Fábián, Alexandra, Szigeti, Mark Bence, Horváth, András, Merkely, Béla, Kovács, Attila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1018
container_issue 8
container_start_page 1005
container_title JACC. Cardiovascular imaging
container_volume 16
creator Tokodi, Márton
Magyar, Bálint
Soós, András
Takeuchi, Masaaki
Tolvaj, Máté
Lakatos, Bálint Károly
Kitano, Tetsuji
Nabeshima, Yosuke
Fábián, Alexandra
Szigeti, Mark Bence
Horváth, András
Merkely, Béla
Kovács, Attila
description Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide. The authors aimed to implement a deep learning (DL)–based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values. The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years. The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF 
doi_str_mv 10.1016/j.jcmg.2023.02.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2813556644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1936878X23001146</els_id><sourcerecordid>2813556644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e329b1e4adcaf2cc7c5806e785cfd273734539b89abb03ce33e65dd493fd85713</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMo3l_AhXTppjWXNknBjZfxAgOKqLiLaXI6pkzbMekIvo3P4pOZoerS1Tlwvv-H8yF0QHBGMOHHTdaYdpZRTFmGaYaJWEPbRAqeiqIk63EvGU-lkM9baCeEBmOOeS420RYTREgs6DZ6uQBYJFPQvnPdLD3TAWxy58E6M7i-S_o6uXez1-Hr8wm6wTuznGufTBoYz5dej8tjiPGvT3qRTMxrb7S3rp953YY9tFHreYD9n7mLHi8nD-fX6fT26ub8dJqaHOMhBUbLikCurdE1NUaYQmIOQhamtlQwwfKClZUsdVVhZoAx4IW1eclqKwtB2C46GnsXvn9bQhhU64KB-Vx30C-DopKwouA8zyNKR9T4PgQPtVp412r_oQhWK7OqUSuzamVWYaqi2Rg6_OlfVi3Yv8ivygicjADEL98deBWMg85ElT7aUrZ3__V_A2GWjC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813556644</pqid></control><display><type>article</type><title>Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tokodi, Márton ; Magyar, Bálint ; Soós, András ; Takeuchi, Masaaki ; Tolvaj, Máté ; Lakatos, Bálint Károly ; Kitano, Tetsuji ; Nabeshima, Yosuke ; Fábián, Alexandra ; Szigeti, Mark Bence ; Horváth, András ; Merkely, Béla ; Kovács, Attila</creator><creatorcontrib>Tokodi, Márton ; Magyar, Bálint ; Soós, András ; Takeuchi, Masaaki ; Tolvaj, Máté ; Lakatos, Bálint Károly ; Kitano, Tetsuji ; Nabeshima, Yosuke ; Fábián, Alexandra ; Szigeti, Mark Bence ; Horváth, András ; Merkely, Béla ; Kovács, Attila</creatorcontrib><description>Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide. The authors aimed to implement a deep learning (DL)–based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values. The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years. The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF &lt;45%) with an accuracy of 78.4%, which was comparable to an expert reader’s visual assessment (77.0%; P = 0.678). The DL-predicted RVEF values were associated with major adverse cardiac events independent of age, sex, and left ventricular systolic function (HR: 0.924 [95% CI: 0.862-0.990]; P = 0.025). Using 2D echocardiographic videos alone, the proposed DL-based tool can accurately assess RV function, with similar diagnostic and prognostic power as 3D imaging. [Display omitted]</description><identifier>ISSN: 1936-878X</identifier><identifier>EISSN: 1876-7591</identifier><identifier>DOI: 10.1016/j.jcmg.2023.02.017</identifier><identifier>PMID: 37178072</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Deep Learning ; Echocardiography ; Humans ; Predictive Value of Tests ; Retrospective Studies ; right ventricle ; right ventricular dysfunction ; right ventricular ejection fraction ; Stroke Volume ; Ventricular Dysfunction, Right ; Ventricular Function, Right</subject><ispartof>JACC. Cardiovascular imaging, 2023-08, Vol.16 (8), p.1005-1018</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e329b1e4adcaf2cc7c5806e785cfd273734539b89abb03ce33e65dd493fd85713</citedby><cites>FETCH-LOGICAL-c400t-e329b1e4adcaf2cc7c5806e785cfd273734539b89abb03ce33e65dd493fd85713</cites><orcidid>0000-0002-8539-5907 ; 0000-0001-7606-1537 ; 0000-0003-3036-4131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcmg.2023.02.017$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37178072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokodi, Márton</creatorcontrib><creatorcontrib>Magyar, Bálint</creatorcontrib><creatorcontrib>Soós, András</creatorcontrib><creatorcontrib>Takeuchi, Masaaki</creatorcontrib><creatorcontrib>Tolvaj, Máté</creatorcontrib><creatorcontrib>Lakatos, Bálint Károly</creatorcontrib><creatorcontrib>Kitano, Tetsuji</creatorcontrib><creatorcontrib>Nabeshima, Yosuke</creatorcontrib><creatorcontrib>Fábián, Alexandra</creatorcontrib><creatorcontrib>Szigeti, Mark Bence</creatorcontrib><creatorcontrib>Horváth, András</creatorcontrib><creatorcontrib>Merkely, Béla</creatorcontrib><creatorcontrib>Kovács, Attila</creatorcontrib><title>Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms</title><title>JACC. Cardiovascular imaging</title><addtitle>JACC Cardiovasc Imaging</addtitle><description>Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide. The authors aimed to implement a deep learning (DL)–based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values. The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years. The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF &lt;45%) with an accuracy of 78.4%, which was comparable to an expert reader’s visual assessment (77.0%; P = 0.678). The DL-predicted RVEF values were associated with major adverse cardiac events independent of age, sex, and left ventricular systolic function (HR: 0.924 [95% CI: 0.862-0.990]; P = 0.025). Using 2D echocardiographic videos alone, the proposed DL-based tool can accurately assess RV function, with similar diagnostic and prognostic power as 3D imaging. [Display omitted]</description><subject>Deep Learning</subject><subject>Echocardiography</subject><subject>Humans</subject><subject>Predictive Value of Tests</subject><subject>Retrospective Studies</subject><subject>right ventricle</subject><subject>right ventricular dysfunction</subject><subject>right ventricular ejection fraction</subject><subject>Stroke Volume</subject><subject>Ventricular Dysfunction, Right</subject><subject>Ventricular Function, Right</subject><issn>1936-878X</issn><issn>1876-7591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMo3l_AhXTppjWXNknBjZfxAgOKqLiLaXI6pkzbMekIvo3P4pOZoerS1Tlwvv-H8yF0QHBGMOHHTdaYdpZRTFmGaYaJWEPbRAqeiqIk63EvGU-lkM9baCeEBmOOeS420RYTREgs6DZ6uQBYJFPQvnPdLD3TAWxy58E6M7i-S_o6uXez1-Hr8wm6wTuznGufTBoYz5dej8tjiPGvT3qRTMxrb7S3rp953YY9tFHreYD9n7mLHi8nD-fX6fT26ub8dJqaHOMhBUbLikCurdE1NUaYQmIOQhamtlQwwfKClZUsdVVhZoAx4IW1eclqKwtB2C46GnsXvn9bQhhU64KB-Vx30C-DopKwouA8zyNKR9T4PgQPtVp412r_oQhWK7OqUSuzamVWYaqi2Rg6_OlfVi3Yv8ivygicjADEL98deBWMg85ElT7aUrZ3__V_A2GWjC4</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Tokodi, Márton</creator><creator>Magyar, Bálint</creator><creator>Soós, András</creator><creator>Takeuchi, Masaaki</creator><creator>Tolvaj, Máté</creator><creator>Lakatos, Bálint Károly</creator><creator>Kitano, Tetsuji</creator><creator>Nabeshima, Yosuke</creator><creator>Fábián, Alexandra</creator><creator>Szigeti, Mark Bence</creator><creator>Horváth, András</creator><creator>Merkely, Béla</creator><creator>Kovács, Attila</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8539-5907</orcidid><orcidid>https://orcid.org/0000-0001-7606-1537</orcidid><orcidid>https://orcid.org/0000-0003-3036-4131</orcidid></search><sort><creationdate>202308</creationdate><title>Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms</title><author>Tokodi, Márton ; Magyar, Bálint ; Soós, András ; Takeuchi, Masaaki ; Tolvaj, Máté ; Lakatos, Bálint Károly ; Kitano, Tetsuji ; Nabeshima, Yosuke ; Fábián, Alexandra ; Szigeti, Mark Bence ; Horváth, András ; Merkely, Béla ; Kovács, Attila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e329b1e4adcaf2cc7c5806e785cfd273734539b89abb03ce33e65dd493fd85713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep Learning</topic><topic>Echocardiography</topic><topic>Humans</topic><topic>Predictive Value of Tests</topic><topic>Retrospective Studies</topic><topic>right ventricle</topic><topic>right ventricular dysfunction</topic><topic>right ventricular ejection fraction</topic><topic>Stroke Volume</topic><topic>Ventricular Dysfunction, Right</topic><topic>Ventricular Function, Right</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokodi, Márton</creatorcontrib><creatorcontrib>Magyar, Bálint</creatorcontrib><creatorcontrib>Soós, András</creatorcontrib><creatorcontrib>Takeuchi, Masaaki</creatorcontrib><creatorcontrib>Tolvaj, Máté</creatorcontrib><creatorcontrib>Lakatos, Bálint Károly</creatorcontrib><creatorcontrib>Kitano, Tetsuji</creatorcontrib><creatorcontrib>Nabeshima, Yosuke</creatorcontrib><creatorcontrib>Fábián, Alexandra</creatorcontrib><creatorcontrib>Szigeti, Mark Bence</creatorcontrib><creatorcontrib>Horváth, András</creatorcontrib><creatorcontrib>Merkely, Béla</creatorcontrib><creatorcontrib>Kovács, Attila</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>JACC. Cardiovascular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokodi, Márton</au><au>Magyar, Bálint</au><au>Soós, András</au><au>Takeuchi, Masaaki</au><au>Tolvaj, Máté</au><au>Lakatos, Bálint Károly</au><au>Kitano, Tetsuji</au><au>Nabeshima, Yosuke</au><au>Fábián, Alexandra</au><au>Szigeti, Mark Bence</au><au>Horváth, András</au><au>Merkely, Béla</au><au>Kovács, Attila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms</atitle><jtitle>JACC. Cardiovascular imaging</jtitle><addtitle>JACC Cardiovasc Imaging</addtitle><date>2023-08</date><risdate>2023</risdate><volume>16</volume><issue>8</issue><spage>1005</spage><epage>1018</epage><pages>1005-1018</pages><issn>1936-878X</issn><eissn>1876-7591</eissn><abstract>Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide. The authors aimed to implement a deep learning (DL)–based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values. The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years. The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF &lt;45%) with an accuracy of 78.4%, which was comparable to an expert reader’s visual assessment (77.0%; P = 0.678). The DL-predicted RVEF values were associated with major adverse cardiac events independent of age, sex, and left ventricular systolic function (HR: 0.924 [95% CI: 0.862-0.990]; P = 0.025). Using 2D echocardiographic videos alone, the proposed DL-based tool can accurately assess RV function, with similar diagnostic and prognostic power as 3D imaging. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37178072</pmid><doi>10.1016/j.jcmg.2023.02.017</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8539-5907</orcidid><orcidid>https://orcid.org/0000-0001-7606-1537</orcidid><orcidid>https://orcid.org/0000-0003-3036-4131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-878X
ispartof JACC. Cardiovascular imaging, 2023-08, Vol.16 (8), p.1005-1018
issn 1936-878X
1876-7591
language eng
recordid cdi_proquest_miscellaneous_2813556644
source MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Deep Learning
Echocardiography
Humans
Predictive Value of Tests
Retrospective Studies
right ventricle
right ventricular dysfunction
right ventricular ejection fraction
Stroke Volume
Ventricular Dysfunction, Right
Ventricular Function, Right
title Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Prediction%20of%20Right%C2%A0Ventricular%20Ejection%20Fraction%20Using%C2%A02D%20Echocardiograms&rft.jtitle=JACC.%20Cardiovascular%20imaging&rft.au=Tokodi,%20M%C3%A1rton&rft.date=2023-08&rft.volume=16&rft.issue=8&rft.spage=1005&rft.epage=1018&rft.pages=1005-1018&rft.issn=1936-878X&rft.eissn=1876-7591&rft_id=info:doi/10.1016/j.jcmg.2023.02.017&rft_dat=%3Cproquest_cross%3E2813556644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813556644&rft_id=info:pmid/37178072&rft_els_id=S1936878X23001146&rfr_iscdi=true