Deep Learning-Based Prediction of Right Ventricular Ejection Fraction Using 2D Echocardiograms
Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable t...
Gespeichert in:
Veröffentlicht in: | JACC. Cardiovascular imaging 2023-08, Vol.16 (8), p.1005-1018 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide.
The authors aimed to implement a deep learning (DL)–based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values.
The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years.
The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF |
---|---|
ISSN: | 1936-878X 1876-7591 |
DOI: | 10.1016/j.jcmg.2023.02.017 |