Effect of tetradecyl methyl acrylate-maleic anhydride copolymer on the mechanical properties of glass mat reinforced polypropylene composites

A new interfacial modifier made of tetradecyl methylacrylate-maleic anhydride copolymer (TMA- co-MAH) was prepared and characterized. The effect of reaction time and monomer ratio on the gross conversion and MAH content in the copolymer was studied. When the glass mat was treated with TMA- co-MAH so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers & polymer composites 2005-01, Vol.13 (4), p.403-413
Hauptverfasser: Zhou, Shanhua, Xu, Zhiyu, Liu, Xin, Gao, Yan, Dong, Qingzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new interfacial modifier made of tetradecyl methylacrylate-maleic anhydride copolymer (TMA- co-MAH) was prepared and characterized. The effect of reaction time and monomer ratio on the gross conversion and MAH content in the copolymer was studied. When the glass mat was treated with TMA- co-MAH solutions and compounded with PP, the MAH group of the interfacial modifier formed strong interactions with the glass mat and the long side chain of the interfacial modifier entangled firmly with the polypropylene matrix. In comparison with maleated polyolefins, the higher MAH content of the TMA- co-MAH resulted in better interfacial adhesion between the PP and the glass mat resulting in increased flexural strength and modulus, and the ductility of the TMA- co-MAH introduced a ductile interlayer into the interface of the glass mat reinforced polypropylene composites (GMT-PPs) to achieve higher impact strength. Therefore the mechanical properties of composites treated with TMA- co-MAH were all superior to those of GMT-PPs treated with maleic anhydride grafted polypropylene (PP- g-MAH) solutions when they were used at the same level. The effects of anhydride content, concentration of copolymer and compounding time on the mechanical property of GMT-PPs were investigated. With the optimal monomer ratio, MAH:TMA = 7:3, a 3% copolymer solution and a compounding time of 5 min, the impact strength, flexural strength and modulus of GMT-PPs treated with the new interfacial modifier were all improved significantly compared with composites treated with 0.3% PP- g-MAH solution.
ISSN:0967-3911
1478-2391
DOI:10.1177/096739110501300407