Tool path planning for compound surfaces in spray forming processes
Spray forming is an emerging manufacturing process. The automated tool planning for this process is a nontrivial problem, especially for geometry-complicated parts consisting of multiple freeform surfaces. Existing tool planning approaches are not able to deal with this kind of compound surface. Thi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2005-07, Vol.2 (3), p.240-249 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spray forming is an emerging manufacturing process. The automated tool planning for this process is a nontrivial problem, especially for geometry-complicated parts consisting of multiple freeform surfaces. Existing tool planning approaches are not able to deal with this kind of compound surface. This paper proposes a tool-path planning approach which optimizes the tool motion performance and the thickness uniformity. There are two steps in this approach. The first step partitions the part surface into flat patches based on the topology and normal directions. The second step determines the tool movement patterns and the sweeping directions for each flat patch. Based on the above two steps, optimal tool paths can be calculated. Experimental tests are carried out on automotive body parts and the results validate the proposed approach. Note to Practitioners-This paper was motivated by the problem of automatically planning tool paths for spray forming using Programmable Powdered Preforming Process (P4) technology. However, the proposed approach can be applied to other surface manufacturing applications such as spray painting, spray cleaning, rapid tooling, etc. Existing tool planning approaches are not able to handle complicated, multi-patch surfaces. This paper proposes a methodology to partition complicated surfaces into easy-to-handle patches and generate tool paths with optimized thickness uniformity and tool motion performance. We tested the approach using simulation on sample automotive body parts and proved its feasibility. However, this approach requires that the parts to be sprayed belong to the sheet-metal type so that the part geometry can be analyzed on a plane. In our future research, we will run physical tests on actual parts and investigate the deposition effects on the thickness uniformity. |
---|---|
ISSN: | 1545-5955 1558-3783 |
DOI: | 10.1109/TASE.2005.847739 |