Risk of systemic fungal infections after exposure to wildfires: a population-based, retrospective study in California
Large-scale wildfires in California, USA, are increasing in both size and frequency, with substantial health consequences. The capacity for wildfire smoke to displace microbes and cause clinically significant fungal infections is poorly understood. We aimed to determine whether exposure to wildfire...
Gespeichert in:
Veröffentlicht in: | The Lancet. Planetary health 2023-05, Vol.7 (5), p.e381-e386 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large-scale wildfires in California, USA, are increasing in both size and frequency, with substantial health consequences. The capacity for wildfire smoke to displace microbes and cause clinically significant fungal infections is poorly understood. We aimed to determine whether exposure to wildfire smoke was associated with an increased risk of hospital admissions for systemic fungal infections.
In this population-based, retrospective study, we used hospital administrative data from 22 hospitals in California, USA, to analyse the association between wildfire smoke exposure and monthly hospital admissions for aspergillosis and coccidioidomycosis. We included hospitals that were members of the Vizient Clinical Data Base or Resource Manager during the study and excluded those that did not have complete reporting into Vizient during the study period. Smoke exposure was estimated using satellite-imaged smoke plumes in the hospital county. Incident rate ratios were calculated for all infection types 1 month and 3 months after smoke exposure.
Between Oct 1, 2014, and May 31, 2018, there were a median of 1638 annual admissions per hospital in the study sample. Individual patient demographics were not collected. We did not observe an association between smoke exposure and rate of hospital admission for aspergillosis. However, hospital admission for coccidioidomycosis increased by 20% (95% CI 5–38) in the month following any smoke exposure. Hospital admission increased by 2% (0–4) for every day that there had been smoke exposure in the previous month, after adjustment for temperature and temporal trend. Similar results were obtained with smoke exposure data from the 3 months before admission.
In the months following wildfire smoke exposure, California hospitals saw increased coccidioidomycosis infections. Given the projected increase in California wildfires and their expansion in endemic territories of soil-dwelling fungi, the ability for wildfire smoke to carry microbes and cause human disease warrants further research.
None. |
---|---|
ISSN: | 2542-5196 2542-5196 |
DOI: | 10.1016/S2542-5196(23)00046-3 |