Control over Charge Carrier Mobility in the Hole Transport Layer Enables Fast Colloidal Quantum Dot Infrared Photodetectors

Solution-processed colloidal quantum dots (CQDs) are promising materials for photodetectors operating in the short-wavelength infrared region (SWIR). Devices typically rely on CQD-based hole transport layers (HTL), such as CQDs treated using 1,2-ethanedithiol. Herein, we find that these HTL material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-05, Vol.23 (10), p.4298-4303
Hauptverfasser: Atan, Ozan, Pina, Joao M., Parmar, Darshan H., Xia, Pan, Zhang, Yangning, Gulsaran, Ahmet, Jung, Eui Dae, Choi, Dongsun, Imran, Muhammad, Yavuz, Mustafa, Hoogland, Sjoerd, Sargent, Edward H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solution-processed colloidal quantum dots (CQDs) are promising materials for photodetectors operating in the short-wavelength infrared region (SWIR). Devices typically rely on CQD-based hole transport layers (HTL), such as CQDs treated using 1,2-ethanedithiol. Herein, we find that these HTL materials exhibit low carrier mobility, limiting the photodiode response speed. We develop instead inverted (p-i-n) SWIR photodetectors operating at 1370 nm, employing NiOx as the HTL, ultimately enabling 4× shorter fall times in photodiodes (∼800 ns for EDT and ∼200 ns for NiOx). Optoelectronic simulations reveal that the high carrier mobility of NiOx enhances the electric field in the active layer, decreasing the overall transport time and increasing photodetector response time.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c00491