Classification models for sequential flight test results for selecting air force pilot trainee

The main purpose of this paper is to present the selection criteria for Air Force pilot training candidates in order to save costs involved in the three stage sequential pilot training procedures currently used in Korea. We use classification models such as decision tree, logistic regression and neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2004-05, Vol.26 (4), p.591-599
Hauptverfasser: Sohn, So Young, Jo, Yong Kwan, Choy, Seong Ok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main purpose of this paper is to present the selection criteria for Air Force pilot training candidates in order to save costs involved in the three stage sequential pilot training procedures currently used in Korea. We use classification models such as decision tree, logistic regression and neural network based on the aptitude test results of 288 ROK Air Force applicants in 1994–1996. Various classification models are compared in terms of classification accuracy, Receiver Operating Characteristic chart and Lift chart. As a result, neural network is evaluated as the best classification model for each sequential flight performance while logistic regression model outperforms the others for the overall flight result. The fitted logistic regression indicates that the factors such as attention sharing, instrument reading, and mechanical comprehension having significant effects on the flight results. We expect that the use of such classification models can increase the effectiveness of flight resources.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2003.12.014