The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase

The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-10, Vol.61 (42), p.e202208743-n/a
Hauptverfasser: Sun, Shu‐Yu, Yao, Nao, Jin, Cheng‐Bin, Xie, Jin, Li, Xi‐Yao, Zhou, Ming‐Yue, Chen, Xiang, Li, Bo‐Quan, Zhang, Xue‐Qiang, Zhang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of rechargeable lithium (Li) batteries is highly correlated with the structure of solid electrolyte interphase (SEI). The properties of a working anode are vital factors in determining the structure of SEI; however, the correspondingly poor understanding hinders the rational regulation of SEI. Herein, the electrode potential and anode material, two critical properties of an anode, in dictating the structural evolution of SEI were investigated theoretically and experimentally. The anode potential is identified as a crucial role in dictating the SEI structure. The anode potential determines the reduction products in the electrolyte, ultimately giving rise to the mosaic and bilayer SEI structure at high and low potential, respectively. In contrast, the anode material does not cause a significant change in the SEI structure. This work discloses the crucial role of electrode potential in dictating SEI structure and provides rational guidance to regulate SEI structure. The role of electrode potential and anode material, two critical properties of a working anode, in dictating the structural evolution of solid electrolyte interphase (SEI) was investigated theoretically and experimentally, which provides rational guidance to regulate SEI structure.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202208743