Expression and Purification of FGFR1-Fc Fusion Protein and Its Effects on Human Lung Squamous Carcinoma
Molecular-targeted therapies for lung squamous cell carcinoma (LSCC) are limited mainly because targetable oncogenic aberrations are absent in LSCC. Recent genomic analyses have revealed that the fibroblast growth factor (FGF) signaling pathway plays a fundamental role in LSCC progression via cancer...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2024, Vol.196 (1), p.573-587 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular-targeted therapies for lung squamous cell carcinoma (LSCC) are limited mainly because targetable oncogenic aberrations are absent in LSCC. Recent genomic analyses have revealed that the fibroblast growth factor (FGF) signaling pathway plays a fundamental role in LSCC progression via cancer cell proliferation and angiogenesis. In the present study, we designed, expressed, and purified a fibroblast growth factor receptor fragment (FGFR1-Fc) fusion protein using NS/0 cells. In FGF2-FGFR1 overexpressed NCI-H1703 cells, the FGFR1-Fc fusion protein effectively inhibited proliferation and invasion and arrested the cell cycle at the G0-G1 phase. In NCI-H1703 cells treated with the FGFR1-Fc fusion protein, the phosphorylation levels of FGFR1, FRS2, ERK, and AKT were significantly reduced. Using an siRNA assay, we demonstrated that FGF2-FGFR1 is the major anti-tumor target of FGFR1-Fc fusion the FGFR1-Fc fusion protein, which also significantly inhibited proliferation and invasion by NCI-H1703 cells via the FGF2-FGFR1 signaling pathway. In addition, the FGFR1-Fc fusion protein significantly inhibited angiogenesis in an embryonic chorioallantoic membrane model. The FGFR1-Fc fusion protein may be an effective therapeutic candidate for LSCC. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-023-04542-6 |