Immobilization of chromium ore processing residue by alkali-activated composite binders and leaching characteristics

Chromium ore processing residue (COPR) is classified as hazardous solid waste because of the leachable Cr(VI). Cementitious materials are often used to solidify and stabilize heavy metals. However, most of them focus on the leaching concentration of particles after solidification and stabilization a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2023-06, Vol.30 (27), p.71154-71170
Hauptverfasser: Peng, Guangjun, Zhang, Pengpeng, Zeng, Linghao, Yu, Lin, Li, Dongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chromium ore processing residue (COPR) is classified as hazardous solid waste because of the leachable Cr(VI). Cementitious materials are often used to solidify and stabilize heavy metals. However, most of them focus on the leaching concentration of particles after solidification and stabilization and lack research on leaching characteristics. This study investigated the leaching characteristics of heavy metals in three simulated environments (HJ557-2010, HJ/T299-2007, TCLP) after immobilizing COPR with composite binders. Industrial solid waste coal fly ash and lead–zinc smelting slag are used to prepare composite binders through alkali activation technology. Compressive strength, particle leaching toxicity, acid neutralization capability, and semi-dynamic leaching test are used to evaluate the performance of the solidified body. The solidified body can be applied to building materials or treated as general industrial waste. Heavy metals are mainly released from the matrix by surface washing at a low rate. The analysis results, including XRD, FTIR, and SEM–EDS, show that chemical binding and physical encapsulation are the main immobilizing mechanisms to realize the coordinated disposal of Zn and Cr(VI).
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-023-27409-z