Ursolic acid–loaded chitosan nanoparticles suppress 7,12-dimethylbenz(a)anthracene-induced oral tumor formation through their antilipid peroxidative potential in golden Syrian hamsters
Oral cancer, a disfiguring and life threatening cancer, significantly affects the day-to-day life of not only the patients but also their family members in terms of life quality and financial burden. India records higher incidence of oral cancer every year and is mainly due to the habituation of tob...
Gespeichert in:
Veröffentlicht in: | Naunyn-Schmiedeberg's archives of pharmacology 2023-11, Vol.396 (11), p.3061-3074 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oral cancer, a disfiguring and life threatening cancer, significantly affects the day-to-day life of not only the patients but also their family members in terms of life quality and financial burden. India records higher incidence of oral cancer every year and is mainly due to the habituation of tobacco products and alcohol abuse. Delay in diagnosis and treatment influences India’s higher incidence of oral cancer, where annually 50,000–60,000 oral carcinoma cases are reported. 7,12-dimethylbenz(a)anthracene (DMBA)-induced cancer in the oral cavity mimics human oral cancer in histopathological, molecular, and morphological aspects, and thus, by using this paradigm, the tumor inhibiting efficacy of medicinal plants or herbs and their components is scientifically validated. Ursolic acid, due to its multiple pharmacological effects, has been attracted, in recent years, for chemoprevention research program. Though, ursolic acid has been shown to have beneficial effects, its poor water solubility and bioavailability hinder to exert its 100% efficacy. Therefore, ursolic acid is encapsulated in either natural or synthetic polymers to enhance its therapeutic efficacy. Chitosan is one of the natural polymers that have been employed in the synthesis of nanoparticles to improve the drug efficacy. The present study has thus chosen ursolic acid–loaded chitosan nanoparticles (UACNP) to assess its anticancer efficacy in the DMBA-induced oral carcinoma. The anticancer efficacy of UACNP in experimental oral carcinogenesis was assessed by employing the status of oxidative markers and detoxification cascade as an end point. DMBA-induced abnormalities in the status of oxidative markers and detoxification cascade were reversed by ursolic acid–loaded chitosan nanoparticles. The tumor inhibiting or suppressing effect of UACNP is thus explored in experimental oral carcinogenesis. |
---|---|
ISSN: | 0028-1298 1432-1912 |
DOI: | 10.1007/s00210-023-02509-2 |