Beyond Volatile Phenols: An Untargeted Metabolomic Approach to Revealing Additional Markers of Smoke Taint in Grapevines (Vitis vinifera L.) cv. Merlot
When bushfires occur near wine regions, vineyards are frequently exposed to environmental smoke, which can negatively affect grapes and wine. For evaluating the severity of smoke exposure, volatile phenols and their glycosides are commonly used as biomarkers of smoke exposure. While critical to refi...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2024-01, Vol.72 (4), p.2018-2033 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When bushfires occur near wine regions, vineyards are frequently exposed to environmental smoke, which can negatively affect grapes and wine. For evaluating the severity of smoke exposure, volatile phenols and their glycosides are commonly used as biomarkers of smoke exposure. While critical to refining smoke taint diagnostics, few studies have comprehensively assessed the compositional impact of smoke exposure of grapes. In this study, Merlot grapevines were exposed to smoke post-véraison, with grapes being sampled both pre-smoke exposure and repeatedly post-smoke exposure, for analysis by liquid chromatography-high-resolution mass spectrometry. Volatile phenol glycosides were detected in control and smoke-affected grapes at ≤22 μg/kg and up to 160 μg/kg, respectively. The metabolite profiles of control and smoke-affected grapes were then compared using an untargeted metabolomics approach and compounds differentiating the sample types tentatively identified. The results demonstrate the presence of novel phenolic glycoconjugates as putative metabolites from environmental smoke together with stress-related grapevine metabolites and highlight the need to further characterize the consequences of grapevine smoke exposure with respect to the regulation of abiotic stress and plant defense mechanisms. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.2c09013 |