Unlocking the Interfacial Adsorption‐Intercalation Pseudocapacitive Storage Limit to Enabling All‐Climate, High Energy/Power Density and Durable Zn‐Ion Batteries

Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure‐integrated modulation concept was present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-07, Vol.62 (27), p.e202304400-n/a
Hauptverfasser: Yang, Ming, Wang, Yanyi, Ma, Dingtao, Zhu, Jianhui, Mi, Hongwei, Zhang, Zuotai, Wu, Buke, Zeng, Lin, Chen, Minfeng, Chen, Jizhang, Zhang, Peixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure‐integrated modulation concept was presented, to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host. Theory research indicated that the co‐modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption‐intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all‐climate high‐performance Zn‐ion batteries. The application of transition metal chalcogenides (TMDs) for zinc‐ion batteries is mainly limited by the sluggish storage kinetics. This report presents an integrated modulation to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host for all‐climate, high energy/power density and durable zinc‐ion batteries. An interfacial adsorption and intercalation pseudocapacitive storage mechanism was also uncovered.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202304400