Semi-analytical technique for the design of disordered coatings with tailored optical properties

Disordered media coatings are finding increasing use in applications such as day-time radiative cooling paints and solar thermal absorber plate coatings which require tailored optical properties over a broad spectrum ranging from visible to far-IR wavelengths. Both monodisperse and polydisperse conf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2023-03, Vol.31 (6), p.10201-10216
Hauptverfasser: Rishi Mishra, Bhrigu, Jo Varghese, Nithin, Sasihithlu, Karthik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disordered media coatings are finding increasing use in applications such as day-time radiative cooling paints and solar thermal absorber plate coatings which require tailored optical properties over a broad spectrum ranging from visible to far-IR wavelengths. Both monodisperse and polydisperse configurations with thickness of coatings up to 500 µm are currently being explored for use in these applications. In such cases it becomes increasingly important to explore utility of analytical and semi-analytical methods for design of such coatings to help reduce the computational cost and time for design. While well-known analytical methods such as Kubelka-Munk and four-flux theory have previously been used for analysis of disordered coatings, analysis of their utility has so far in literature been restricted to either solar spectrum or IR but not simultaneously over the combined spectrum as required for the above applications. In this work, we have analysed the applicability of these two analytical methods for such coatings over the entire wavelength range from visible to IR, and based on observed deviation from exact numerical simulation we propose a semi-analytical technique to aid in the design of these coatings with significant computational cost savings.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.484308