Low-loss silicon nitride photonic ICs for near-infrared wavelength bandwidth
Low-loss photonic integrated circuits (PICs) are the key elements in future quantum technologies, nonlinear photonics and neural networks. The low-loss photonic circuits technology targeting C-band application is well established across multi-project wafer (MPW) fabs, whereas near-infrared (NIR) PIC...
Gespeichert in:
Veröffentlicht in: | Optics express 2023-05, Vol.31 (10), p.16227-16242 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-loss photonic integrated circuits (PICs) are the key elements in future quantum technologies, nonlinear photonics and neural networks. The low-loss photonic circuits technology targeting C-band application is well established across multi-project wafer (MPW) fabs, whereas near-infrared (NIR) PICs suitable for the state-of-the-art single-photon sources are still underdeveloped. Here, we report the labs-scale process optimization and optical characterization of low-loss tunable photonic integrated circuits for single-photon applications. We demonstrate the lowest propagation losses to the date (as low as 0.55 dB/cm at 925 nm wavelength) in single-mode silicon nitride submicron waveguides (220×550 nm). This performance is achieved due to advanced e-beam lithography and inductively coupled plasma reactive ion etching steps which yields waveguides vertical sidewalls with down to 0.85 nm sidewall roughness. These results provide a chip-scale low-loss PIC platform that could be even further improved with high quality SiO
cladding, chemical-mechanical polishing and multistep annealing for extra-strict single-photon applications. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.477458 |