Cooperative multiple interactions of donor-π-acceptor dyes enhance the efficiency and stability of perovskite solar cells

Surface passivation by organic dyes has been an effective strategy for simultaneous enhancement of the efficiency and stability of perovskite solar cells. However, lack of in-depth understanding of how subtle structural changes in dyes leads to distinctly different passivation effects is a challenge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-05, Vol.25 (19), p.13383-13392
Hauptverfasser: Hou, Xiufang, Zhang, Weiyi, Li, Quan-Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface passivation by organic dyes has been an effective strategy for simultaneous enhancement of the efficiency and stability of perovskite solar cells. However, lack of in-depth understanding of how subtle structural changes in dyes leads to distinctly different passivation effects is a challenge for screening effective passivation molecules (PMs). In an experiment done by Han et al. ( Adv. Energy Mater. , 2019, 9 , 1803766), three donor-π-acceptor (D-π-A) dyes (SP1, SP2, and SP3) with distinct electron donors have been applied to passivate the perovskite surface, where the efficiency and stability of PSCs are quite different. Herein, we carried out first-principles calculations and ab initio molecular dynamics (AIMD) simulations on the structures and electronic properties of SP1, SP2, SP3, and their passivated perovskite surfaces. Our results showed that SP3 enhances the carrier transfer rate, electric field, and absorption region compared to SP1 and SP2. Moreover, AIMD simulations reveal that the cooperative multiple interactions of O-Pb, S-Pb, and H-I between SP3 and the perovskite surface result in a stronger passivation effect in a humid environment than that of SP1 and SP2. This work is expected to pave the way for screening dye passivation molecules to endow perovskite solar cells with high efficiency and stability. Different passivation effects come from various multiple interactions between the passivation molecules (SP1, SP2, and SP3) and the perovskite surface.
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp00704a