Unrevealing the shared genetic mechanisms underlying C-reactive protein and schizophrenia
Longitudinal observational studies and Mendelian randomization research have obtained contradictory conclusions regarding the association between C-reactive protein (CRP) level and schizophrenia risk. However, the shared genetic mechanisms underlying CRP and schizophrenia remain poorly understood. H...
Gespeichert in:
Veröffentlicht in: | Progress in neuro-psychopharmacology & biological psychiatry 2023-08, Vol.126, p.110785-110785, Article 110785 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Longitudinal observational studies and Mendelian randomization research have obtained contradictory conclusions regarding the association between C-reactive protein (CRP) level and schizophrenia risk. However, the shared genetic mechanisms underlying CRP and schizophrenia remain poorly understood. Here, we examined the global and local genetic correlations using summary statistics from large-scale genome-wide association studies (GWAS) on CRP level and schizophrenia. Furthermore, we identified their shared genetic variants by applying the conditional false discovery rate approach and performed functional analyses of shared variants to explore the shared genetic mechanisms underlying CRP level and schizophrenia. We found a significant negative genetic correlation at the whole genome level and five significant local genetic correlations between CRP level and schizophrenia. Eight-three shared genetic loci were identified, from which single-nucleotide polymorphism (SNP) presents mixed effects on the increased CRP level and schizophrenia risk. Additionally, we identified 64 and 73 candidate genes that were mapped from SNPs with“concordant effect”(ceSNPs) and“discordant effect”(deSNPs) on the CRP level and schizophrenia risk respectively. Functional analyses revealed that genes mapped from ceSNPs and deSNPs exhibited similar patterns of human brain developmental expression trajectories and biological processes, but differed in expression levels and cell-type-specific enrichment in brain tissues. Our findings demonstrated mixed effects of shared genetic architecture between CRP level and schizophrenia, proving a deeper insight into the shared genetic aetiology underlying the CRP level and schizophrenia.
•There is a global negative genetic correlation and five local genetic correlations between CRP level and schizophrenia.•Shared genetic variants have mixed effects on the CRP level and schizophrenia risk.•Our results highlight the complexity of shared genetic mechanisms between CRP level and schizophrenia risk. |
---|---|
ISSN: | 0278-5846 1878-4216 |
DOI: | 10.1016/j.pnpbp.2023.110785 |