Moisture wicking textiles with hydrophilic oriented polyacrylonitrile layer: Enabling ultrafast directional water transport
[Display omitted] Functional textiles with high-performance directional water transport for regulating human sweat are in high demand because of growing concerns about the role of comfort in the performance of wearer. However, the fabrication of such materials remains a critical job. Here, we report...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2023-09, Vol.645, p.200-209 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Functional textiles with high-performance directional water transport for regulating human sweat are in high demand because of growing concerns about the role of comfort in the performance of wearer. However, the fabrication of such materials remains a critical job. Here, we report a facile strategy to develop hydrophilic oriented polyacrylonitrile (HOPAN)/hydrophilic polylactic acid @polyvinylidene fluoride (HPLA@PVDF) composite membrane with surface energy gradient for enhanced directional water transport. Three step fabrication strategy involves electrospinning of oriented polyacrylonitrile (OPAN fibers) on polylactic acid (PLA) nonwoven surface followed by dip-coating in hydrophilic agent, and single-side electrospray of PVDF dilute solution on HOPAN/HPLA. Combination of highly oriented fiber structure, differential pore size and asymmetric wettability between two layers enabled instant water transport. The resultant fabricated composite membranes offer superior properties with one-way transport capacity (R) of 1117%, overall moisture management capacity (OMMC) of 0.91, and excellent water vapor transmission rate of 11.6 kg m−2 d-1. The successful preparation of these fascinating directional water transport materials offers new insight into the role of fiber alignment along with differential apertures and asymmetric chemical structure for realizing membranes for quick-drying applications. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.04.140 |