Structural optimization of SUTBDG devices for low-power applications

In this paper, we investigate the impact of physical structure on the performance of symmetric ultrathin body double-gate devices for low-operating-power (LOP) applications. Devices with regular raised source/drain (S/D) structures have optimal spacer thicknesses governed by a tradeoff between fring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2005-03, Vol.52 (3), p.360-366
Hauptverfasser: Shiying Xiong, Bokor, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 3
container_start_page 360
container_title IEEE transactions on electron devices
container_volume 52
creator Shiying Xiong
Bokor, J.
description In this paper, we investigate the impact of physical structure on the performance of symmetric ultrathin body double-gate devices for low-operating-power (LOP) applications. Devices with regular raised source/drain (S/D) structures have optimal spacer thicknesses governed by a tradeoff between fringing capacitance and series resistance. Expanded S/D structures improve on regular raised S/D structures by slowing down the increases in both fringing capacitance with gate height and series resistance with spacer thickness. The cost is more chip area and process complexity. Pure high-/spl kappa/ gate dielectrics raise the off-state current (I/sub OFF/) due to the fringing field-induced barrier lowering effect. Suppressing the I/sub OFF/ increase requires either a significant reduction in equivalent oxide thickness or a significant shift in gate work function. If the gate work function is tuned to maintain a fixed I/sub OFF/, devices with less abrupt S/D-channel junctions suffer a drive current (I/sub ON/) degradation, and devices with weakly coupling S/D and relatively thick bodies gain improvements in I/sub ON/. The I/sub ON/ of a device with metal S/D is significantly lower than required for LOP applications, if the S/D Schottky barrier height (SBH) is over 200 meV. We also briefly discuss the impact of mobility degradation on this structural optimization.
doi_str_mv 10.1109/TED.2005.843869
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28111546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1397985</ieee_id><sourcerecordid>28111546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-6bf9a7da5657d861b1d9c24a1340269424056ccb2d8b7a113e449b948cc988783</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7p2YOXIqinbknzo8lRtzmFgYdt55CmKWR0S01ah_71ZlYYePAUHvm8x3tfAK4RHCEExXg1m44yCOmIE8yZOAEDRGmeCkbYKRhAiHgqMMfn4CKETSwZIdkATJet73TbeVUnrmnt1n6p1rpd4qpkuV49TedJaT6sNiGpnE9qt08btzc-UU1TW_1jwyU4q1QdzNXvOwTr59lq8pIu3uavk8dFqjFHbcqKSqi8VJTRvOQMFagUOiMKYQIzJkhGIGVaF1nJi1whhA0hohCEay04zzkegod-buPde2dCK7c2aFPXamdcFyQXLCOUEBjl_b8y4wghSliEt3_gxnV-F6-QnOUUHnaKaNwj7V0I3lSy8Xar_KdEUB7ClzF8eQhf9uHHjrvfsSpoVVde7bQNxzZGKcXRDsFN76wx5viNRS44xd_qTIsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867502405</pqid></control><display><type>article</type><title>Structural optimization of SUTBDG devices for low-power applications</title><source>IEEE Electronic Library (IEL)</source><creator>Shiying Xiong ; Bokor, J.</creator><creatorcontrib>Shiying Xiong ; Bokor, J.</creatorcontrib><description>In this paper, we investigate the impact of physical structure on the performance of symmetric ultrathin body double-gate devices for low-operating-power (LOP) applications. Devices with regular raised source/drain (S/D) structures have optimal spacer thicknesses governed by a tradeoff between fringing capacitance and series resistance. Expanded S/D structures improve on regular raised S/D structures by slowing down the increases in both fringing capacitance with gate height and series resistance with spacer thickness. The cost is more chip area and process complexity. Pure high-/spl kappa/ gate dielectrics raise the off-state current (I/sub OFF/) due to the fringing field-induced barrier lowering effect. Suppressing the I/sub OFF/ increase requires either a significant reduction in equivalent oxide thickness or a significant shift in gate work function. If the gate work function is tuned to maintain a fixed I/sub OFF/, devices with less abrupt S/D-channel junctions suffer a drive current (I/sub ON/) degradation, and devices with weakly coupling S/D and relatively thick bodies gain improvements in I/sub ON/. The I/sub ON/ of a device with metal S/D is significantly lower than required for LOP applications, if the S/D Schottky barrier height (SBH) is over 200 meV. We also briefly discuss the impact of mobility degradation on this structural optimization.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2005.843869</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance ; Charge carrier mobility ; Degradation ; Devices ; Double-gate (DG) ; Electrical engineering. Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; expanded source/gate (S/D) ; Gates ; high ; junction abruptness ; metal S/D ; MOSFETs ; Optimization ; Optimization methods ; Power electronics, power supplies ; Retarding ; Schottky barriers ; Spacers ; structural optimization ; weakly coupling S/D ; Work function ; Work functions</subject><ispartof>IEEE transactions on electron devices, 2005-03, Vol.52 (3), p.360-366</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-6bf9a7da5657d861b1d9c24a1340269424056ccb2d8b7a113e449b948cc988783</citedby><cites>FETCH-LOGICAL-c381t-6bf9a7da5657d861b1d9c24a1340269424056ccb2d8b7a113e449b948cc988783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1397985$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1397985$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16555384$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiying Xiong</creatorcontrib><creatorcontrib>Bokor, J.</creatorcontrib><title>Structural optimization of SUTBDG devices for low-power applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, we investigate the impact of physical structure on the performance of symmetric ultrathin body double-gate devices for low-operating-power (LOP) applications. Devices with regular raised source/drain (S/D) structures have optimal spacer thicknesses governed by a tradeoff between fringing capacitance and series resistance. Expanded S/D structures improve on regular raised S/D structures by slowing down the increases in both fringing capacitance with gate height and series resistance with spacer thickness. The cost is more chip area and process complexity. Pure high-/spl kappa/ gate dielectrics raise the off-state current (I/sub OFF/) due to the fringing field-induced barrier lowering effect. Suppressing the I/sub OFF/ increase requires either a significant reduction in equivalent oxide thickness or a significant shift in gate work function. If the gate work function is tuned to maintain a fixed I/sub OFF/, devices with less abrupt S/D-channel junctions suffer a drive current (I/sub ON/) degradation, and devices with weakly coupling S/D and relatively thick bodies gain improvements in I/sub ON/. The I/sub ON/ of a device with metal S/D is significantly lower than required for LOP applications, if the S/D Schottky barrier height (SBH) is over 200 meV. We also briefly discuss the impact of mobility degradation on this structural optimization.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Charge carrier mobility</subject><subject>Degradation</subject><subject>Devices</subject><subject>Double-gate (DG)</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>expanded source/gate (S/D)</subject><subject>Gates</subject><subject>high</subject><subject>junction abruptness</subject><subject>metal S/D</subject><subject>MOSFETs</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Power electronics, power supplies</subject><subject>Retarding</subject><subject>Schottky barriers</subject><subject>Spacers</subject><subject>structural optimization</subject><subject>weakly coupling S/D</subject><subject>Work function</subject><subject>Work functions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90M9LwzAUB_AgCs7p2YOXIqinbknzo8lRtzmFgYdt55CmKWR0S01ah_71ZlYYePAUHvm8x3tfAK4RHCEExXg1m44yCOmIE8yZOAEDRGmeCkbYKRhAiHgqMMfn4CKETSwZIdkATJet73TbeVUnrmnt1n6p1rpd4qpkuV49TedJaT6sNiGpnE9qt08btzc-UU1TW_1jwyU4q1QdzNXvOwTr59lq8pIu3uavk8dFqjFHbcqKSqi8VJTRvOQMFagUOiMKYQIzJkhGIGVaF1nJi1whhA0hohCEay04zzkegod-buPde2dCK7c2aFPXamdcFyQXLCOUEBjl_b8y4wghSliEt3_gxnV-F6-QnOUUHnaKaNwj7V0I3lSy8Xar_KdEUB7ClzF8eQhf9uHHjrvfsSpoVVde7bQNxzZGKcXRDsFN76wx5viNRS44xd_qTIsA</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Shiying Xiong</creator><creator>Bokor, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050301</creationdate><title>Structural optimization of SUTBDG devices for low-power applications</title><author>Shiying Xiong ; Bokor, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-6bf9a7da5657d861b1d9c24a1340269424056ccb2d8b7a113e449b948cc988783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Charge carrier mobility</topic><topic>Degradation</topic><topic>Devices</topic><topic>Double-gate (DG)</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>expanded source/gate (S/D)</topic><topic>Gates</topic><topic>high</topic><topic>junction abruptness</topic><topic>metal S/D</topic><topic>MOSFETs</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Power electronics, power supplies</topic><topic>Retarding</topic><topic>Schottky barriers</topic><topic>Spacers</topic><topic>structural optimization</topic><topic>weakly coupling S/D</topic><topic>Work function</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiying Xiong</creatorcontrib><creatorcontrib>Bokor, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shiying Xiong</au><au>Bokor, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural optimization of SUTBDG devices for low-power applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2005-03-01</date><risdate>2005</risdate><volume>52</volume><issue>3</issue><spage>360</spage><epage>366</epage><pages>360-366</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, we investigate the impact of physical structure on the performance of symmetric ultrathin body double-gate devices for low-operating-power (LOP) applications. Devices with regular raised source/drain (S/D) structures have optimal spacer thicknesses governed by a tradeoff between fringing capacitance and series resistance. Expanded S/D structures improve on regular raised S/D structures by slowing down the increases in both fringing capacitance with gate height and series resistance with spacer thickness. The cost is more chip area and process complexity. Pure high-/spl kappa/ gate dielectrics raise the off-state current (I/sub OFF/) due to the fringing field-induced barrier lowering effect. Suppressing the I/sub OFF/ increase requires either a significant reduction in equivalent oxide thickness or a significant shift in gate work function. If the gate work function is tuned to maintain a fixed I/sub OFF/, devices with less abrupt S/D-channel junctions suffer a drive current (I/sub ON/) degradation, and devices with weakly coupling S/D and relatively thick bodies gain improvements in I/sub ON/. The I/sub ON/ of a device with metal S/D is significantly lower than required for LOP applications, if the S/D Schottky barrier height (SBH) is over 200 meV. We also briefly discuss the impact of mobility degradation on this structural optimization.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2005.843869</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2005-03, Vol.52 (3), p.360-366
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_28111546
source IEEE Electronic Library (IEL)
subjects Applied sciences
Capacitance
Charge carrier mobility
Degradation
Devices
Double-gate (DG)
Electrical engineering. Electrical power engineering
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
expanded source/gate (S/D)
Gates
high
junction abruptness
metal S/D
MOSFETs
Optimization
Optimization methods
Power electronics, power supplies
Retarding
Schottky barriers
Spacers
structural optimization
weakly coupling S/D
Work function
Work functions
title Structural optimization of SUTBDG devices for low-power applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20optimization%20of%20SUTBDG%20devices%20for%20low-power%20applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shiying%20Xiong&rft.date=2005-03-01&rft.volume=52&rft.issue=3&rft.spage=360&rft.epage=366&rft.pages=360-366&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2005.843869&rft_dat=%3Cproquest_RIE%3E28111546%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867502405&rft_id=info:pmid/&rft_ieee_id=1397985&rfr_iscdi=true