Machine learning in cardiology: Clinical application and basic research
Machine learning is a subfield of artificial intelligence. The quality and versatility of machine learning have been rapidly improving and playing a critical role in many aspects of social life. This trend is also observed in the medical field. Generally, there are three main types of machine learni...
Gespeichert in:
Veröffentlicht in: | Journal of cardiology 2023-08, Vol.82 (2), p.128-133 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machine learning is a subfield of artificial intelligence. The quality and versatility of machine learning have been rapidly improving and playing a critical role in many aspects of social life. This trend is also observed in the medical field. Generally, there are three main types of machine learning: supervised, unsupervised, and reinforcement learning. Each type of learning is adequately selected for the purpose and type of data. In the field of medicine, various types of information are collected and used, and research using machine learning is becoming increasingly relevant. Many clinical studies are conducted using electronic health and medical records, including in the cardiovascular area. Machine learning has also been applied in basic research. Machine learning has been widely used for several types of data analysis, such as clustering of microarray analysis and RNA sequence analysis. Machine learning is essential for genome and multi-omics analyses. This review summarizes the recent advancements in the use of machine learning in clinical applications and basic cardiovascular research.
[Display omitted]
•Machine learning plays a critical role in many aspects of social life.•Recent clinical studies have been conducted by machine learning.•Machine learning has been widely used in basic research.•We summarize the recent advancements in the use of machine learning. |
---|---|
ISSN: | 0914-5087 1876-4738 |
DOI: | 10.1016/j.jjcc.2023.04.020 |