Efficiency and mechanism in preparation and heavy metal cation/anion adsorption of amphoteric adsorbents modified from various plant straws

Cellulose can be modified for the loading of functional groups such as amino groups, sulfydryl groups, and carboxyl groups. Cellulose-modified adsorbents generally have specific adsorption capacities for either heavy metal anions or cations, and possess the advantages of wide raw material source, hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-08, Vol.884, p.163887-163887, Article 163887
Hauptverfasser: Wu, Yong, Ming, Jiabao, Zhou, Wenbing, Xiao, Naidong, Cai, Jianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellulose can be modified for the loading of functional groups such as amino groups, sulfydryl groups, and carboxyl groups. Cellulose-modified adsorbents generally have specific adsorption capacities for either heavy metal anions or cations, and possess the advantages of wide raw material source, high modification efficiency, high adsorbent recyclability, and great convenience in recovery of the adsorbed heavy metals. At present, preparation of amphoteric heavy metal adsorbents from lignocellulose has attracted great attention. However, the difference in efficiency of preparing heavy metal adsorbents by modification of various plant straw materials and mechanism for the difference remain to be further explored. In this study, three plant straws, including Eichhornia crassipes (EC), sugarcane bagasse (SB) and metasequoia sawdust (MS), were sequentially modified by tetraethylene-pentamine (TEPA) and biscarboxymethyl trithiocarbonate (BCTTC) to obtain amphoteric cellulosic adsorbents (EC-TB, SB-TB and MS-TB, respectively), which can simultaneously adsorb heavy metal cations or anions. The heavy metal adsorption properties and mechanism before and after modification were compared. Pb(II) and Cr(VI) removal rates by the three adsorbents were 2.2–4.3 folds and 3.0–13.0 folds of those before modification, respectively, following the order of MS-TB > EC-TB > SB-TB. In the five-cycle adsorption-regeneration test, the Pb(II) and Cr(VI) removal rate by MS-TB decreased by 58.1 % and 21.5 %, respectively. Among the three plant straws, MS possessed the most abundant hydroxyl groups and the largest specific surface area (SSA), and accordingly MS-TB had the highest load of adsorption functional groups [(C)NH, (S)CS and (HO)CO] and also the largest SSA among the three adsorbents, which contribute to its highest modification and adsorption efficiency. This study is of great significance for screening suitable raw plant materials to prepare amphoteric heavy metal adsorbents with superior adsorption performance. [Display omitted] •Three plant materials were screened for amphoteric heavy metal adsorbent preparation.•MS had the highest yield of adsorbent among the three adsorbents.•MS contained the most abundant hydroxyl and cellulose and lignin among raw materials.•MS-TB had the highest removal rate of Pb(II) and Cr(VI) among three adsorbents.•Successful preparation of three adsorbents was verified by FTIR and XPS.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.163887