Modeling the Enzyme Specificity by Molecular Cages through Regulating Reactive Oxygen Species Evolution

Mimicking the active site and the substrate binding cavity of the enzyme to achieve specificity in catalytic reactions is an essential challenge. Herein, porous coordination cages (PCCs) with intrinsic cavities and tunable metal centers have proved the regulation of reactive oxygen species (ROS) gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-08, Vol.62 (31), p.e202303896-n/a
Hauptverfasser: Yuan, Jiang‐Pei, Guan, Zong‐Jie, Lin, Heng‐Yu, Yan, Bing, Liu, Kang‐Kai, Zhou, Hong‐Cai, Fang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mimicking the active site and the substrate binding cavity of the enzyme to achieve specificity in catalytic reactions is an essential challenge. Herein, porous coordination cages (PCCs) with intrinsic cavities and tunable metal centers have proved the regulation of reactive oxygen species (ROS) generating pathways as evidenced by multiple photo‐induced oxidations. Remarkably, in the presence of the Zn4‐μ4‐O center, PCC converted dioxygen molecules from triplet to singlet excitons, whereas the Ni4‐μ4‐O center promoted the efficient dissociation of electrons and holes to conduct electron transfer towards substrates. Accordingly, the distinct ROS generation behavior of PCC‐6‐Zn and PCC‐6‐Ni enables the conversion of O2 to 1O2 and O2⋅−, respectively. In contrast, the Co4‐μ4‐O center combined the 1O2 and O2⋅− together to generate carbonyl radicals, which in turn reacted with the oxygen molecules. Harnessing the three oxygen activation pathways, PCC‐6‐M (M=Zn/Ni/Co) display specific catalytic activities in thioanisole oxidation (PCC‐6‐Zn), benzylamine coupling (PCC‐6‐Ni), and aldehyde autoxidation (PCC‐6‐Co). This work not only provides fundamental insights into the regulation of ROS generation by a supramolecular catalyst but also demonstrates a rare example of achieving reaction specificity through mimicking natural enzymes by PCCs. Porous coordination cages with Zn‐, Ni‐ and Co‐metal clusters exhibited different electronic structures which dictated the reactive oxygen species evolution. Three photoreactions were achieved by the three cages, respectively, because of the distinct charge transfer and energy transfer pathways. This work demonstrated a rare case that a supramolecular photocatalyst exhibited reaction specificity.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202303896