High-Efficiency ZnS: Cu+, Al3+ Scintillator for X‑ray Detection in a Non-Darkroom Environment
Scintillator is a key component in X-ray detectors that determine the performance of the devices. Nevertheless, due to the interference of the ambient light sources, scintillators are only operated in a darkroom environment currently. In this study, we designed a Cu+ and Al3+ co-doped ZnS scintillat...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2023-05, Vol.62 (20), p.7914-7920 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scintillator is a key component in X-ray detectors that determine the performance of the devices. Nevertheless, due to the interference of the ambient light sources, scintillators are only operated in a darkroom environment currently. In this study, we designed a Cu+ and Al3+ co-doped ZnS scintillator (ZnS: Cu+, Al3+) that introduces donor–acceptor (D–A) pairs for X-ray detection. The prepared scintillator displayed an extremely high steady-state light yield (53,000 photons per MeV) upon X-ray irradiation, which is 5.3 times higher than that of the commercial Bi4Ge3O12 (BGO) scintillator, making it possible in X-ray detection with the interference of ambient light. Furthermore, the prepared material was employed as a scintillator to construct an indirect X-ray detector, which performed a superior spatial resolution (≈10.0 lp/mm) as well as persistent stability under visible light interference, demonstrating the feasibility of the scintillator in practical applications. Therefore, this research presented a convenient and useful strategy to realize X-ray detection in a non-darkroom environment. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.3c00719 |