Halloysite nanotubes modified poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer-in-salt electrolyte to achieve high-performance Li metal batteries
[Display omitted] Solid-state Li metal batteries (SSLMBs) are one of the most promising energy storage devices, as they offer high energy density and improved safety compared to conventional Li-ion batteries. However, the large-scale application of SSLMBs at room temperature is restricted by the mai...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2023-09, Vol.645, p.45-54 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Solid-state Li metal batteries (SSLMBs) are one of the most promising energy storage devices, as they offer high energy density and improved safety compared to conventional Li-ion batteries. However, the large-scale application of SSLMBs at room temperature is restricted by the main challenges such as low ionic conductivity and poor cyclic performance. Herein, a composed polymer-in-salt electrolyte (CPISE) is fabricated, which is composed of polyvinylidene vinylidene hexafluoropropene (PVDF-HFP) and high-concentration Li bis(trifluoromethanesulphonyl)imide (LiTFSI), reinforced with natural halloysite nanotubes (HNTs). The High concentration of LiTFSI and introduced HNTs synergized with PVDF-HFP to provide more various Li+ transport pathways. Additionally, the backbones of the uniform dispersion of HNTs in the CPISE effectively boosts the physicochemical nature of the CPISE. As a result, the prepared CPISE achieves excellent mechanical strength, high ionic conductivity (1.23*10-3 S cm−1) and high Li+ transference number (0.57) at room temperature. Consequently, in existence of the CPISE, the Li symmetric cell cycles stably beyond 800 h at 0.15 mA cm−2 and the LiFePO4/Li cell displays impressive cyclic performance with capacity retention of 79% after 1000 cycles at 30 °C. Furthermore, the superiority and the functional mechanism of the CPISE are discovered in detail. This work provides a promising strategy for the development of high-performance SSMLBs at room temperature. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.04.127 |