Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study
Pendimethalin (PND) is a herbicide that is regarded to be possibly carcinogenic to humans and toxic to the environment. Herein, we fabricated a highly sensitive DNA biosensor based on ZIF-8/Co/rGO/C3N4 nanohybrid modification of a screen-printed carbon electrode (SPCE) to monitor PND in real samples...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2023-08, Vol.332, p.138815-138815, Article 138815 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pendimethalin (PND) is a herbicide that is regarded to be possibly carcinogenic to humans and toxic to the environment. Herein, we fabricated a highly sensitive DNA biosensor based on ZIF-8/Co/rGO/C3N4 nanohybrid modification of a screen-printed carbon electrode (SPCE) to monitor PND in real samples. The layer-by-layer fabrication pathway was conducted to construct ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE biosensor. The physicochemical characterization techniques confirmed the successful synthesis of ZIF-8/Co/rGO/C3N4 hybrid nanocomposite, as well as the appropriate modification of the SPCE surface. The utilization of ZIF-8/Co/rGO/C3N4 nanohybrid as a modifier was analyzed using. The electrochemical impedance spectroscopy results showed that the modified SPCE exhibited significantly lowered charge transfer resistance due to the enhancement of its electrical conductivity and facilitation of the transfer of charged particles. The proposed biosensor successfully quantified PND in a wide concentration range of 0.01–35 μM, with a limit of detection (LOD) value of 8.0 nM. The PND monitoring capability of the fabricated biosensor in real samples including rice, wheat, tap, and river water samples was verified with a recovery range of 98.2–105.6%. Moreover, to predict the interaction sites of PND herbicide with DNA, the molecular docking study was performed between the PND molecule and two sequence DNA fragments and confirmed the experimental findings. This research sets the stage for developing highly sensitive DNA biosensors that will be used to monitor and quantify toxic herbicides in real samples by fusing the advantages of nanohybrid structures with crucial knowledge from a molecular docking investigation.
[Display omitted]
•Calf Thymus ds-DNA intercalation with pendimethalin herbicide.•Fast and sensitive monitoring of pendimethalin herbicide.•Bio-sensing approach confirmed with Docking investigation. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2023.138815 |