A Model-Based Feed-Forward Controller Scheme for Accurate Chilled Water Temperature Control of Inlet Guide Vane Centrifugal Chillers

Capacity control in most commercial centrifugal chillers is achieved by inlet guide vanes which are activated by the leaving chilled water temperature sensor. Due to mechanical reasons, vane control is done discretely, and not continuously. The control module compares the value provided by the tempe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solar energy engineering 2005-02, Vol.127 (1), p.47-52
Hauptverfasser: Jia, Yongzhong, Reddy, T. Agami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Capacity control in most commercial centrifugal chillers is achieved by inlet guide vanes which are activated by the leaving chilled water temperature sensor. Due to mechanical reasons, vane control is done discretely, and not continuously. The control module compares the value provided by the temperature sensor to pre-set control band values, and if those bands are exceeded, it sends a signal to the vane control motor to adjust the vane position by one step which could be upwards or downwards. The advantage of this type of discrete control method is its simplicity. Normally, the accuracy in the outlet chilled water temperature is of the order of 0.5°C, which is acceptable for normal cooling plants such as used in office buildings. However, there are applications such as in pharmaceutical processes, mechanics labs, or instances in chemical processes where more accurate control is required (sometimes as low as 0.05°C). This paper proposes a simple method to achieve such tight control without any hardware modifications. The basis of this method is a transient physical inverse model of the refrigerant boiling process in the evaporator, in conjunction with a feed-forward control scheme. The model parameters need to be identified from monitored data since they are chiller-specific. This paper describes the model, and applies it to one-minute monitored data from an actual chiller plant of 1580 kW (450 Tons). It is demonstrated that for this specific chiller such a control scheme has the potential to improve control accuracy by about 28% as compared to the traditional control method.
ISSN:0199-6231
1528-8986
DOI:10.1115/1.1775225