Transient plasma ignition of quiescent and flowing air/fuel mixtures

Transient plasmas that exist during the formative phase of a pulse-ignited atmospheric pressure discharge were studied for application to ignition of quiescent and flowing fuel-air mixtures. Quiescent methane-air mixture ignition was studied as a function of equivalence ratio, and flowing ethane-air...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2005-04, Vol.33 (2), p.844-849
Hauptverfasser: Fei Wang, Liu, J.B., Sinibaldi, J., Brophy, C., Kuthi, A., Jiang, C., Ronney, P., Gundersen, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transient plasmas that exist during the formative phase of a pulse-ignited atmospheric pressure discharge were studied for application to ignition of quiescent and flowing fuel-air mixtures. Quiescent methane-air mixture ignition was studied as a function of equivalence ratio, and flowing ethane-air mixture was studied in a pulse detonation engine (PDE). The transient plasma was primarily comprised of streamers, which exist during approximately 50 ns prior to the formation of an equilibrated electron energy distribution. Results of significant reduction in delay to ignition and ignition pressure rise time were obtained with energy costs roughly comparable to traditional spark ignition methods (100-800 mJ). Reduction in delay to ignition by factors of typically 3 in quiescent mixes to >4 in a flowing PDE (0.35 kg/s), and other enhancements in performance were obtained. These results, along with a discussion of a pseudospark-based pulse generator that was developed for these applications, will be presented.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2005.845251