Treatment of molten salt wastes by phosphate precipitation: removal of fission product elements after pyrochemical reprocessing of spent nuclear fuels in chloride melts
The removal of fission product elements from molten salt wastes arising from pyrochemical reprocessing of spent nuclear fuels has been investigated. The experiments were conducted in LiCl–KCl eutectic at 550 °C and NaCl–KCl equimolar mixture at 750 °C. The behavior of the following individual elemen...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2003-11, Vol.323 (1), p.49-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The removal of fission product elements from molten salt wastes arising from pyrochemical reprocessing of spent nuclear fuels has been investigated. The experiments were conducted in LiCl–KCl eutectic at 550 °C and NaCl–KCl equimolar mixture at 750 °C. The behavior of the following individual elements was investigated: Cs, Mg, Sr, Ba, lanthanides (La to Dy), Zr, Cr, Mo, Mn, Re (to simulate Tc), Fe, Ru, Ni, Cd, Bi and Te. Lithium and sodium phosphates were used as precipitants. The efficiency of the process and the composition of the solid phases formed depend on the melt composition. The distribution coefficients of these elements between chloride melts and precipitates were determined. Some volatile chlorides were produced and rhenium metal was formed by disproportionation. Lithium-free melts favor formation of double phosphates. Some experiments in melts containing several added fission product elements were also conducted to study possible co-precipitation reactions. Rare earth elements and zirconium can be removed from both the systems studied, but alkaline earth metal fission product elements (Sr and Ba) form precipitates only in NaCl–KCl based melts. Essentially the reverse behavior was found with magnesium. Some metals form oxide rather than phosphate precipitates and the behavior of certain elements is solvent dependent. Caesium cannot be removed completely from chloride melts by a phosphate precipitation technique. |
---|---|
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/j.jnucmat.2003.08.024 |