Shear Strength of Sn–3.5Ag Solder Bumps Formed on Ni/Au and Organic Solderability Preservative Surface-Finished Bond Pads After Multiple Reflow Steps

Sn–3.5Ag solder bumps were formed on electroless Ni/immersion Au (Ni/Au) and organic solderability preservative (OSP) surface-finished bond pads, respectively. The shear strength of the solder bumps was measured as a function of reflow steps. Fracture surfaces and interfacial microstructures were in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2005-11, Vol.20 (11), p.3088-3093
Hauptverfasser: Lee, Jung-Sub, Chu, Kun-Mo, Jeon, Duk Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sn–3.5Ag solder bumps were formed on electroless Ni/immersion Au (Ni/Au) and organic solderability preservative (OSP) surface-finished bond pads, respectively. The shear strength of the solder bumps was measured as a function of reflow steps. Fracture surfaces and interfacial microstructures were investigated by scanning electron microscope. The shear strength of Ni/Au samples increased up to the seventh reflow step and subsequently decreased after the tenth reflow step. Spalling of Ni3Sn4 intermetallic compounds (IMCs) and the P-rich Ni layer strengthened and weakened the bond, respectively. For OSP samples, although Cu6Sn5 IMCs grew as the reflow step was repeated, no remarkable change in shear strength was observed. Interfacial fractures of OSP samples occurred at the interface between Cu6Sn5 IMC and Cu3Sn IMC. Fracture surfaces of OSP samples showed concave pits that consisted of a Cu3Sn bottom and an Sn wall. The pits were formed by separation of Cu6Sn5 IMC from Cu3Sn IMC and the molten Sn channel between the Cu6Sn5 IMC grains.
ISSN:0884-2914
2044-5326
DOI:10.1557/JMR.2005.0380