Tear-film evaporation flux and its relationship to tear properties in symptomatic and asymptomatic soft-contact-lens wearers
With soft-contact-lens wear, evaporation of the pre-lens tear film affects the osmolarity of the post-lens tear film and this can introduce a hyperosmotic environment at the corneal epithelium, leading to discomfort. The purposes of the study are to ascertain whether there are differences in evapora...
Gespeichert in:
Veröffentlicht in: | Contact lens & anterior eye 2023-08, Vol.46 (4), p.101850-101850, Article 101850 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With soft-contact-lens wear, evaporation of the pre-lens tear film affects the osmolarity of the post-lens tear film and this can introduce a hyperosmotic environment at the corneal epithelium, leading to discomfort. The purposes of the study are to ascertain whether there are differences in evaporation flux (i.e., the evaporation rate per unit area) between symptomatic and asymptomatic soft-contact-lens wearers, to assess the repeatability of a flow evaporimeter, and to assess the relationship between evaporation fluxes, tear properties, and environmental conditions.
Closed-chamber evaporimeters commonly used in ocular-surface research do not control relative humidity and airflow, and, therefore, misestimate the actual tear-evaporation flux. A recently developed flow evaporimeter overcomes these limitations and was used to measure accurate in-vivo tear-evaporation fluxes with and without soft-contact-lens wear for symptomatic and asymptomatic habitual contact-lens wearers. Concomitantly, lipid-layer thickness, ocular-surface-temperature decline rate (i.e., °C/s), non-invasive tear break-up time, tear-meniscus height, Schirmer tear test, and environmental conditions were measured in a 5 visit study.
Twenty-one symptomatic and 21 asymptomatic soft-contact-lens wearers completed the study. A thicker lipid layer was associated with slower evaporation flux (p |
---|---|
ISSN: | 1367-0484 1476-5411 |
DOI: | 10.1016/j.clae.2023.101850 |