TGF-β3 Protects Neurons Against Intermittent Hypoxia-Induced Oxidative Stress and Apoptosis Through Activation of the Nrf-2/KEAP1/HO-1 Pathway via Binding to TGF-βRI

Intermittent hypoxia (IH) is the primary pathological manifestation of obstructive sleep apnea (OSA) and the main cause of OSA-induced cognitive impairment. Hippocampal neurons are considered to be critical cells affected by IH. Transforming growth factor-β3 (TGF-β3) is a cytokine with a neuroprotec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2023-09, Vol.48 (9), p.2808-2825
Hauptverfasser: Huang, Yinpei, Liu, Zhili, Wang, Xin, Li, Yaoxu, Liu, Lian, Li, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intermittent hypoxia (IH) is the primary pathological manifestation of obstructive sleep apnea (OSA) and the main cause of OSA-induced cognitive impairment. Hippocampal neurons are considered to be critical cells affected by IH. Transforming growth factor-β3 (TGF-β3) is a cytokine with a neuroprotective effect, which plays a crucial role in resisting hypoxic brain injury, while its role in IH-induced neuronal injury is still unclear. Here, we aimed to clarify the mechanism of TGF-β3 protecting IH-exposed neurons by regulating oxidative stress and secondary apoptosis. Morris water maze results revealed that IH exposure was unable to affect the vision and motor ability of rats, but significantly affected their spatial cognition. Second-generation sequencing (RNA-seq) and subsequent experiments supported that IH decreased TGF-β3 expression and stimulated reactive oxygen species (ROS)-induced oxidative stress and apoptosis in rat hippocampus. In vitro, IH exposure significantly activated oxidative stress within HT-22 cells. Exogenous administration of Recombinant Human Transforming Growth Factor-β3 (rhTGF-β3) prevented ROS surge and secondary apoptosis in HT-22 cells caused by IH, while TGF-β type receptor I (TGF-βRI) inhibitor SB431542 blocked the neuroprotective effect of rhTGF-β3. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a transcription factor preserving intracellular redox homeostasis. rhTGF-β3 improved the nuclear translocation of Nrf-2 and activated downstream pathway. However, Nrf-2 inhibitor ML385 suppressed the activation of the Nrf-2 mechanism by rhTGF-3 and restored the effects of oxidative stress damage. These results indicate that TGF-β3 binding to TGF-βRI activates the intracellular Nrf-2/KEAP1/HO-1 pathway, reduces ROS creation, and attenuates oxidative stress and apoptosis in IH-exposed HT-22 cells.
ISSN:0364-3190
1573-6903
DOI:10.1007/s11064-023-03942-8