Suppressing Phase Segregation in CsPbIBr2 Films via Anchoring Halide Ions toward Underwater Solar Cells

Inorganic CsPbIBr2 perovskite solar cells (PSCs) have accomplished many milestones, yet their progress has been constrained by ion migration and phase separation. This study explores the modulation of perovskite crystallization kinetics and halide ion migration through chlorobenzene (CB) antisolvent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-05, Vol.23 (10), p.4479-4486
Hauptverfasser: Wang, Huaxin, Yang, Ming, Cai, Wensi, Zang, Zhigang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4486
container_issue 10
container_start_page 4479
container_title Nano letters
container_volume 23
creator Wang, Huaxin
Yang, Ming
Cai, Wensi
Zang, Zhigang
description Inorganic CsPbIBr2 perovskite solar cells (PSCs) have accomplished many milestones, yet their progress has been constrained by ion migration and phase separation. This study explores the modulation of perovskite crystallization kinetics and halide ion migration through chlorobenzene (CB) antisolvent with bis­(penta­fluoro­phenyl)­zinc (Zn­(C6F5)2) additive. The photoluminescence and absorption spectra reveal the significantly reduced phase segregaton in CsPbIBr2 film treated by CB with Zn­(C6F5)2. Moreover, this research analyzes the CsPbIBr2 film’s free carrier lifetime, diffusion length, and mobility using time-resolved microwave conductivity and transient absorption spectroscopy after Zn­(C6F5)2 modification. Consequently, the modified CsPbIBr2 PSCs offer a 12.57% power conversion efficiency (PCE), the highest value among CsPbIBr2 PSCs with negligible hysteresis and prolonged stability. Furthermore, under 1-m-deep water, CsPbIBr2 PSCs display a PCE of 14.18%. These findings provide an understanding of the development of phase-segregation-free CsPbIBr2 films and showcase the prospective applications of CsPbIBr2 PSCs in underwater power systems.
doi_str_mv 10.1021/acs.nanolett.3c00815
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2809541821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809541821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-a87c9c7b897ca4b814c143f1cfa86f8a88024e9554c2cf28fa54e04d0e2227203</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-Ax_66At427WsfcRFhIREEuR5uXTdGBkttpv8fUdAn-7JzTknJx8hzwzGDDh7RRPHDp1vbNuOEwOgmLwhAyYTGE205rf_Wol78hDjHgB0ImFAqnV3PAYbY-0qutphtHRtq2ArbGvvaO1oFlfbxVvgdFY3h0h_aqRTZ3Y-nBNzbOrC0oV3kbb-hKGgG1fYcMLWBrr2DQaa2aaJj-SuxCbap-sdks3s_Subj5afH4tsuhwhk7odoUqNNulW6dSg2ComDBNJyUyJalIqVAq4sFpKYbgpuSpRCguiAMs5TzkkQ_Jy6T0G_93Z2OaHOpp-ATrru5hzBVoKpjjrrXCx9vjyve-C64flDPIz0_z8_GOaX5kmv9oHbgU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809541821</pqid></control><display><type>article</type><title>Suppressing Phase Segregation in CsPbIBr2 Films via Anchoring Halide Ions toward Underwater Solar Cells</title><source>American Chemical Society Journals</source><creator>Wang, Huaxin ; Yang, Ming ; Cai, Wensi ; Zang, Zhigang</creator><creatorcontrib>Wang, Huaxin ; Yang, Ming ; Cai, Wensi ; Zang, Zhigang</creatorcontrib><description>Inorganic CsPbIBr2 perovskite solar cells (PSCs) have accomplished many milestones, yet their progress has been constrained by ion migration and phase separation. This study explores the modulation of perovskite crystallization kinetics and halide ion migration through chlorobenzene (CB) antisolvent with bis­(penta­fluoro­phenyl)­zinc (Zn­(C6F5)2) additive. The photoluminescence and absorption spectra reveal the significantly reduced phase segregaton in CsPbIBr2 film treated by CB with Zn­(C6F5)2. Moreover, this research analyzes the CsPbIBr2 film’s free carrier lifetime, diffusion length, and mobility using time-resolved microwave conductivity and transient absorption spectroscopy after Zn­(C6F5)2 modification. Consequently, the modified CsPbIBr2 PSCs offer a 12.57% power conversion efficiency (PCE), the highest value among CsPbIBr2 PSCs with negligible hysteresis and prolonged stability. Furthermore, under 1-m-deep water, CsPbIBr2 PSCs display a PCE of 14.18%. These findings provide an understanding of the development of phase-segregation-free CsPbIBr2 films and showcase the prospective applications of CsPbIBr2 PSCs in underwater power systems.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c00815</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2023-05, Vol.23 (10), p.4479-4486</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7822-5486 ; 0000-0003-1632-503X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c00815$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c00815$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wang, Huaxin</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Cai, Wensi</creatorcontrib><creatorcontrib>Zang, Zhigang</creatorcontrib><title>Suppressing Phase Segregation in CsPbIBr2 Films via Anchoring Halide Ions toward Underwater Solar Cells</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Inorganic CsPbIBr2 perovskite solar cells (PSCs) have accomplished many milestones, yet their progress has been constrained by ion migration and phase separation. This study explores the modulation of perovskite crystallization kinetics and halide ion migration through chlorobenzene (CB) antisolvent with bis­(penta­fluoro­phenyl)­zinc (Zn­(C6F5)2) additive. The photoluminescence and absorption spectra reveal the significantly reduced phase segregaton in CsPbIBr2 film treated by CB with Zn­(C6F5)2. Moreover, this research analyzes the CsPbIBr2 film’s free carrier lifetime, diffusion length, and mobility using time-resolved microwave conductivity and transient absorption spectroscopy after Zn­(C6F5)2 modification. Consequently, the modified CsPbIBr2 PSCs offer a 12.57% power conversion efficiency (PCE), the highest value among CsPbIBr2 PSCs with negligible hysteresis and prolonged stability. Furthermore, under 1-m-deep water, CsPbIBr2 PSCs display a PCE of 14.18%. These findings provide an understanding of the development of phase-segregation-free CsPbIBr2 films and showcase the prospective applications of CsPbIBr2 PSCs in underwater power systems.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kFFPwjAUhRujiYj-Ax_66At427WsfcRFhIREEuR5uXTdGBkttpv8fUdAn-7JzTknJx8hzwzGDDh7RRPHDp1vbNuOEwOgmLwhAyYTGE205rf_Wol78hDjHgB0ImFAqnV3PAYbY-0qutphtHRtq2ArbGvvaO1oFlfbxVvgdFY3h0h_aqRTZ3Y-nBNzbOrC0oV3kbb-hKGgG1fYcMLWBrr2DQaa2aaJj-SuxCbap-sdks3s_Subj5afH4tsuhwhk7odoUqNNulW6dSg2ComDBNJyUyJalIqVAq4sFpKYbgpuSpRCguiAMs5TzkkQ_Jy6T0G_93Z2OaHOpp-ATrru5hzBVoKpjjrrXCx9vjyve-C64flDPIz0_z8_GOaX5kmv9oHbgU</recordid><startdate>20230524</startdate><enddate>20230524</enddate><creator>Wang, Huaxin</creator><creator>Yang, Ming</creator><creator>Cai, Wensi</creator><creator>Zang, Zhigang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7822-5486</orcidid><orcidid>https://orcid.org/0000-0003-1632-503X</orcidid></search><sort><creationdate>20230524</creationdate><title>Suppressing Phase Segregation in CsPbIBr2 Films via Anchoring Halide Ions toward Underwater Solar Cells</title><author>Wang, Huaxin ; Yang, Ming ; Cai, Wensi ; Zang, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-a87c9c7b897ca4b814c143f1cfa86f8a88024e9554c2cf28fa54e04d0e2227203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huaxin</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Cai, Wensi</creatorcontrib><creatorcontrib>Zang, Zhigang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Huaxin</au><au>Yang, Ming</au><au>Cai, Wensi</au><au>Zang, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing Phase Segregation in CsPbIBr2 Films via Anchoring Halide Ions toward Underwater Solar Cells</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2023-05-24</date><risdate>2023</risdate><volume>23</volume><issue>10</issue><spage>4479</spage><epage>4486</epage><pages>4479-4486</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Inorganic CsPbIBr2 perovskite solar cells (PSCs) have accomplished many milestones, yet their progress has been constrained by ion migration and phase separation. This study explores the modulation of perovskite crystallization kinetics and halide ion migration through chlorobenzene (CB) antisolvent with bis­(penta­fluoro­phenyl)­zinc (Zn­(C6F5)2) additive. The photoluminescence and absorption spectra reveal the significantly reduced phase segregaton in CsPbIBr2 film treated by CB with Zn­(C6F5)2. Moreover, this research analyzes the CsPbIBr2 film’s free carrier lifetime, diffusion length, and mobility using time-resolved microwave conductivity and transient absorption spectroscopy after Zn­(C6F5)2 modification. Consequently, the modified CsPbIBr2 PSCs offer a 12.57% power conversion efficiency (PCE), the highest value among CsPbIBr2 PSCs with negligible hysteresis and prolonged stability. Furthermore, under 1-m-deep water, CsPbIBr2 PSCs display a PCE of 14.18%. These findings provide an understanding of the development of phase-segregation-free CsPbIBr2 films and showcase the prospective applications of CsPbIBr2 PSCs in underwater power systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.3c00815</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7822-5486</orcidid><orcidid>https://orcid.org/0000-0003-1632-503X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2023-05, Vol.23 (10), p.4479-4486
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2809541821
source American Chemical Society Journals
title Suppressing Phase Segregation in CsPbIBr2 Films via Anchoring Halide Ions toward Underwater Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20Phase%20Segregation%20in%20CsPbIBr2%20Films%20via%20Anchoring%20Halide%20Ions%20toward%20Underwater%20Solar%20Cells&rft.jtitle=Nano%20letters&rft.au=Wang,%20Huaxin&rft.date=2023-05-24&rft.volume=23&rft.issue=10&rft.spage=4479&rft.epage=4486&rft.pages=4479-4486&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c00815&rft_dat=%3Cproquest_acs_j%3E2809541821%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809541821&rft_id=info:pmid/&rfr_iscdi=true