Suppressing Phase Segregation in CsPbIBr2 Films via Anchoring Halide Ions toward Underwater Solar Cells
Inorganic CsPbIBr2 perovskite solar cells (PSCs) have accomplished many milestones, yet their progress has been constrained by ion migration and phase separation. This study explores the modulation of perovskite crystallization kinetics and halide ion migration through chlorobenzene (CB) antisolvent...
Gespeichert in:
Veröffentlicht in: | Nano letters 2023-05, Vol.23 (10), p.4479-4486 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inorganic CsPbIBr2 perovskite solar cells (PSCs) have accomplished many milestones, yet their progress has been constrained by ion migration and phase separation. This study explores the modulation of perovskite crystallization kinetics and halide ion migration through chlorobenzene (CB) antisolvent with bis(pentafluorophenyl)zinc (Zn(C6F5)2) additive. The photoluminescence and absorption spectra reveal the significantly reduced phase segregaton in CsPbIBr2 film treated by CB with Zn(C6F5)2. Moreover, this research analyzes the CsPbIBr2 film’s free carrier lifetime, diffusion length, and mobility using time-resolved microwave conductivity and transient absorption spectroscopy after Zn(C6F5)2 modification. Consequently, the modified CsPbIBr2 PSCs offer a 12.57% power conversion efficiency (PCE), the highest value among CsPbIBr2 PSCs with negligible hysteresis and prolonged stability. Furthermore, under 1-m-deep water, CsPbIBr2 PSCs display a PCE of 14.18%. These findings provide an understanding of the development of phase-segregation-free CsPbIBr2 films and showcase the prospective applications of CsPbIBr2 PSCs in underwater power systems. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.3c00815 |