Secure data communication in mobile ad hoc networks

We address the problem of secure and fault-tolerant communication in the presence of adversaries across a multihop wireless network with frequently changing topology. To effectively cope with arbitrary malicious disruption of data transmissions, we propose and evaluate the secure message transmissio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2006-02, Vol.24 (2), p.343-356
Hauptverfasser: Papadimitratos, P., Haas, Z.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem of secure and fault-tolerant communication in the presence of adversaries across a multihop wireless network with frequently changing topology. To effectively cope with arbitrary malicious disruption of data transmissions, we propose and evaluate the secure message transmission (SMT) protocol and its alternative, the secure single-path (SSP) protocol. Among the salient features of SMT and SSP is their ability to operate solely in an end-to-end manner and without restrictive assumptions on the network trust and security associations. As a result, the protocols are applicable to a wide range of network architectures. We demonstrate that highly reliable communication can be sustained with small delay and small delay variability, even when a substantial portion of the network nodes systematically or intermittently disrupt communication. SMT and SSP robustly detect transmission failures and continuously configure their operation to avoid and tolerate data loss, and to ensure the availability of communication. This is achieved at the expense of moderate transmission and routing overhead, which can be traded off for delay. Overall, the ability of the protocols to mitigate both malicious and benign faults allows fast and reliable data transport even in highly adverse network environments.
ISSN:0733-8716
1558-0008
1558-0008
DOI:10.1109/JSAC.2005.861392