GRIN-lens-based in-line digital holographic microscopy
In-line digital holographic microscopy (DHM) provides three-dimensional images with large fields of view and depths of field and micrometer-scale resolution, using a compact, cost-effective, and stable setup. Here, we develop the theoretical background and experimentally demonstrate an in-line DHM b...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2023-04, Vol.62 (10), p.D131-D137 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In-line digital holographic microscopy (DHM) provides three-dimensional images with large fields of view and depths of field and micrometer-scale resolution, using a compact, cost-effective, and stable setup. Here, we develop the theoretical background and experimentally demonstrate an in-line DHM based on a gradient-index (GRIN) rod lens. In addition, we develop a conventional pinhole-based in-line DHM with different configurations to compare the resolution and image quality of both GRIN-based and pinhole-based systems. We show that in a high-magnification regime, where the sample is positioned near a source that produces spherical waves, our optimized GRIN-based setup provides better resolution (∼1.38µ
). Furthermore, we employed this microscope to holographically image dilute polystyrene micro-particles with diameters of 3.0 and 2.0 µm. We investigated the effect of light source-detector and sample-detector distances on the resolution, by both theory and experiment. Our theoretical and experimental results are in good agreement. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.476535 |