Automation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader Performance
Background Automation bias (the propensity for humans to favor suggestions from automated decision-making systems) is a known source of error in human-machine interactions, but its implications regarding artificial intelligence (AI)-aided mammography reading are unknown. Purpose To determine how aut...
Gespeichert in:
Veröffentlicht in: | Radiology 2023-05, Vol.307 (4), p.e222176-e222176 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Automation bias (the propensity for humans to favor suggestions from automated decision-making systems) is a known source of error in human-machine interactions, but its implications regarding artificial intelligence (AI)-aided mammography reading are unknown. Purpose To determine how automation bias can affect inexperienced, moderately experienced, and very experienced radiologists when reading mammograms with the aid of an artificial intelligence (AI) system. Materials and Methods In this prospective experiment, 27 radiologists read 50 mammograms and provided their Breast Imaging Reporting and Data System (BI-RADS) assessment assisted by a purported AI system. Mammograms were obtained between January 2017 and December 2019 and were presented in two randomized sets. The first was a training set of 10 mammograms, with the correct BI-RADS category suggested by the AI system. The second was a set of 40 mammograms in which an incorrect BI-RADS category was suggested for 12 mammograms. Reader performance, degree of bias in BI-RADS scoring, perceived accuracy of the AI system, and reader confidence in their own BI-RADS ratings were assessed using analysis of variance (ANOVA) and repeated-measures ANOVA followed by post hoc tests and Kruskal-Wallis tests followed by the Dunn post hoc test. Results The percentage of correctly rated mammograms by inexperienced (mean, 79.7% ± 11.7 [SD] vs 19.8% ± 14.0;
< .001;
= 0.93), moderately experienced (mean, 81.3% ± 10.1 vs 24.8% ± 11.6;
< .001;
= 0.96), and very experienced (mean, 82.3% ± 4.2 vs 45.5% ± 9.1;
= .003;
= 0.97) radiologists was significantly impacted by the correctness of the AI prediction of BI-RADS category. Inexperienced radiologists were significantly more likely to follow the suggestions of the purported AI when it incorrectly suggested a higher BI-RADS category than the actual ground truth compared with both moderately (mean degree of bias, 4.0 ± 1.8 vs 2.4 ± 1.5;
= .044;
= 0.46) and very (mean degree of bias, 4.0 ± 1.8 vs 1.2 ± 0.8;
= .009;
= 0.65) experienced readers. Conclusion The results show that inexperienced, moderately experienced, and very experienced radiologists reading mammograms are prone to automation bias when being supported by an AI-based system. This and other effects of human and machine interaction must be considered to ensure safe deployment and accurate diagnostic performance when combining human readers and AI. © RSNA, 2023
See also the editorial by Baltzer in this issue |
---|---|
ISSN: | 0033-8419 1527-1315 |
DOI: | 10.1148/radiol.222176 |