Smartphone-integrated tri-color fluorescence sensing platform based on acid-sensitive fluorescence imprinted polymers for dual-mode visual intelligent detection of ibuprofen, chloramphenicol and florfenicol
The abuse of multiple antibiotics and anti-inflammatory drugs can harm the ecological environment and human health. Herein, a smartphone-integrated tri-color fluorescence sensing platform based on acid-sensitive fluorescence imprinted polymers was proposed for dual-mode visual intelligent detection...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2023-06, Vol.1260, p.341174-341174, Article 341174 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The abuse of multiple antibiotics and anti-inflammatory drugs can harm the ecological environment and human health. Herein, a smartphone-integrated tri-color fluorescence sensing platform based on acid-sensitive fluorescence imprinted polymers was proposed for dual-mode visual intelligent detection of ibuprofen (IP), chloramphenicol (CAP), and florfenicol (FF). In this research, the dual-mode of tri-color ratiometric fluorescence imprinted sensor (TC-FMIPs) was realized at different pH environments for the detection IP, CAP, and FF. The fluorescence peak at 551 nm of TC-FMIPs was quenched in the presence of IP solution and fluorescence peak at 687 nm was quenched in the presence of CAP phosphate buffer solution (PBS, pH 7.0), while the fluorescence peak at 433 nm kept stable. Interestingly, the TC-FMIPs has a peroxidase-like activity, in which a new fluorescence peak at 561 nm was quenched and the fluorescence peak at 433 nm increased gradually with the addition of FF solution in pH 4.0 PBS. The TC-FMIPs showed a low detection limit of 10 pM, 8.5 pM, and 5.5 nM for IP, CAP, and FF, respectively. Additionally, a smartphone was used to capture of fluorescence colors and read out the RGB values for intelligent detection of IP, CAP, and FF, in which the detection limit was calculated as 15 pM, 12 pM and 7 nM toward IP, CAP and FF, respectively. The smartphone-integrated tri-color fluorescence sensing platform was developed for dual-mode visual intelligent detection of IP, CAP and FF successfully, which provided a new strategy for multi-target detection in the complex environment.
[Display omitted]
•A smartphone-integrated tri-color fluorescence sensing platform was proposed.•The dual-mode detection was realized handily under different pH conditions.•The smartphone-integrated sensing platform can detect intelligently IP, CAP, and FF.•A new fluorescence sensing platform for determination of multiple targets was developed. |
---|---|
ISSN: | 0003-2670 1873-4324 |
DOI: | 10.1016/j.aca.2023.341174 |