Isothermal Heteroepitaxy of Ge1–x Sn x Structures for Electronic and Photonic Applications

Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge1–x Sn x alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied electronic materials 2023-04, Vol.5 (4), p.2268-2275
Hauptverfasser: Concepción, Omar, Søgaard, Nicolaj B., Bae, Jin-Hee, Yamamoto, Yuji, Tiedemann, Andreas T., Ikonic, Zoran, Capellini, Giovanni, Zhao, Qing-Tai, Grützmacher, Detlev, Buca, Dan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge1–x Sn x alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge1–x Sn x layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge1–x Sn x layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N2 carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.
ISSN:2637-6113
2637-6113
DOI:10.1021/acsaelm.3c00112